Microsoft Recognizers-Text 项目教程
2024-09-15 13:09:04作者:鲍丁臣Ursa
1. 项目介绍
1.1 项目概述
Microsoft Recognizers-Text 是一个开源项目,旨在提供对多种语言中实体(如数字、单位、日期/时间等)的强大识别和解析功能。该项目支持多种编程语言,包括 C#、JavaScript/TypeScript、Python 和 Java,并且提供了丰富的 NuGet 和 NPM 包,方便开发者集成到自己的项目中。
1.2 主要功能
- 数字识别:支持多种语言的数字识别和解析。
- 单位识别:支持年龄、货币、尺寸、温度等单位的识别和解析。
- 日期/时间识别:支持多种语言的日期和时间识别和解析。
- 布尔值识别:支持多种语言的布尔值(是/否)识别。
- 序列识别:支持电话号码、URL、电子邮件和 IP 地址等序列实体的识别。
1.3 支持的语言
- 完全支持:中文、英语、法语、西班牙语、葡萄牙语、德语、意大利语、土耳其语、印地语、荷兰语。
- 部分支持:日语、韩语、阿拉伯语、瑞典语。
2. 项目快速启动
2.1 安装
2.1.1 使用 NuGet (C#)
dotnet add package Microsoft.Recognizers.Text
2.1.2 使用 NPM (JavaScript/TypeScript)
npm install @microsoft/recognizers-text
2.1.3 使用 PyPI (Python)
pip install recognizers-text
2.2 示例代码
2.2.1 C# 示例
using Microsoft.Recognizers.Text;
using Microsoft.Recognizers.Text.Number;
class Program
{
static void Main(string[] args)
{
var result = NumberRecognizer.RecognizeNumber("I have two apples", Culture.English);
foreach (var item in result)
{
Console.WriteLine($"Text: {item.Text}, Type: {item.TypeName}");
}
}
}
2.2.2 JavaScript 示例
const { recognizeNumber } = require('@microsoft/recognizers-text-number');
const result = recognizeNumber('I have two apples', 'en-us');
result.forEach(item => {
console.log(`Text: ${item.text}, Type: ${item.typeName}`);
});
2.2.3 Python 示例
from recognizers_text import Culture
from recognizers_text.number import recognize_number
result = recognize_number("I have two apples", Culture.English)
for item in result:
print(f"Text: {item.text}, Type: {item.type_name}")
3. 应用案例和最佳实践
3.1 应用案例
- 聊天机器人:在聊天机器人中识别用户输入的数字、日期和时间,以便更好地理解和响应用户需求。
- 数据清洗:在数据清洗过程中,自动识别和解析文本中的数字和单位,提高数据处理的效率。
- 自然语言处理:在自然语言处理任务中,识别和解析文本中的实体,为后续的语义分析提供基础。
3.2 最佳实践
- 多语言支持:根据应用场景选择合适的语言包,确保识别和解析的准确性。
- 性能优化:在处理大量文本时,考虑使用批处理或异步处理,以提高性能。
- 错误处理:在实际应用中,添加适当的错误处理机制,以应对识别失败的情况。
4. 典型生态项目
4.1 Microsoft Bot Framework
Microsoft Bot Framework 是一个用于构建聊天机器人的框架,广泛使用了 Recognizers-Text 项目来识别和解析用户输入中的实体。
4.2 LUIS (Language Understanding Intelligent Service)
LUIS 是微软提供的自然语言理解服务,也使用了 Recognizers-Text 项目来增强其对用户输入的理解能力。
4.3 Power Virtual Agents
Power Virtual Agents 是微软提供的一个无代码聊天机器人构建平台,同样依赖于 Recognizers-Text 项目来处理用户输入中的实体。
通过本教程,您应该能够快速上手使用 Microsoft Recognizers-Text 项目,并在实际应用中发挥其强大的实体识别和解析功能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178