Microsoft Recognizers-Text 项目教程
2024-09-15 14:25:11作者:鲍丁臣Ursa
1. 项目介绍
1.1 项目概述
Microsoft Recognizers-Text 是一个开源项目,旨在提供对多种语言中实体(如数字、单位、日期/时间等)的强大识别和解析功能。该项目支持多种编程语言,包括 C#、JavaScript/TypeScript、Python 和 Java,并且提供了丰富的 NuGet 和 NPM 包,方便开发者集成到自己的项目中。
1.2 主要功能
- 数字识别:支持多种语言的数字识别和解析。
- 单位识别:支持年龄、货币、尺寸、温度等单位的识别和解析。
- 日期/时间识别:支持多种语言的日期和时间识别和解析。
- 布尔值识别:支持多种语言的布尔值(是/否)识别。
- 序列识别:支持电话号码、URL、电子邮件和 IP 地址等序列实体的识别。
1.3 支持的语言
- 完全支持:中文、英语、法语、西班牙语、葡萄牙语、德语、意大利语、土耳其语、印地语、荷兰语。
- 部分支持:日语、韩语、阿拉伯语、瑞典语。
2. 项目快速启动
2.1 安装
2.1.1 使用 NuGet (C#)
dotnet add package Microsoft.Recognizers.Text
2.1.2 使用 NPM (JavaScript/TypeScript)
npm install @microsoft/recognizers-text
2.1.3 使用 PyPI (Python)
pip install recognizers-text
2.2 示例代码
2.2.1 C# 示例
using Microsoft.Recognizers.Text;
using Microsoft.Recognizers.Text.Number;
class Program
{
static void Main(string[] args)
{
var result = NumberRecognizer.RecognizeNumber("I have two apples", Culture.English);
foreach (var item in result)
{
Console.WriteLine($"Text: {item.Text}, Type: {item.TypeName}");
}
}
}
2.2.2 JavaScript 示例
const { recognizeNumber } = require('@microsoft/recognizers-text-number');
const result = recognizeNumber('I have two apples', 'en-us');
result.forEach(item => {
console.log(`Text: ${item.text}, Type: ${item.typeName}`);
});
2.2.3 Python 示例
from recognizers_text import Culture
from recognizers_text.number import recognize_number
result = recognize_number("I have two apples", Culture.English)
for item in result:
print(f"Text: {item.text}, Type: {item.type_name}")
3. 应用案例和最佳实践
3.1 应用案例
- 聊天机器人:在聊天机器人中识别用户输入的数字、日期和时间,以便更好地理解和响应用户需求。
- 数据清洗:在数据清洗过程中,自动识别和解析文本中的数字和单位,提高数据处理的效率。
- 自然语言处理:在自然语言处理任务中,识别和解析文本中的实体,为后续的语义分析提供基础。
3.2 最佳实践
- 多语言支持:根据应用场景选择合适的语言包,确保识别和解析的准确性。
- 性能优化:在处理大量文本时,考虑使用批处理或异步处理,以提高性能。
- 错误处理:在实际应用中,添加适当的错误处理机制,以应对识别失败的情况。
4. 典型生态项目
4.1 Microsoft Bot Framework
Microsoft Bot Framework 是一个用于构建聊天机器人的框架,广泛使用了 Recognizers-Text 项目来识别和解析用户输入中的实体。
4.2 LUIS (Language Understanding Intelligent Service)
LUIS 是微软提供的自然语言理解服务,也使用了 Recognizers-Text 项目来增强其对用户输入的理解能力。
4.3 Power Virtual Agents
Power Virtual Agents 是微软提供的一个无代码聊天机器人构建平台,同样依赖于 Recognizers-Text 项目来处理用户输入中的实体。
通过本教程,您应该能够快速上手使用 Microsoft Recognizers-Text 项目,并在实际应用中发挥其强大的实体识别和解析功能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C036
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
428
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
345
Ascend Extension for PyTorch
Python
236
270
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
71
36
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669