FoundationChat项目中的结构化输出技术解析
2025-06-27 07:47:12作者:邓越浪Henry
概述
在FoundationChat项目中,结构化输出是一个核心功能,它允许开发者通过定义清晰的数据模型来规范语言模型生成的输出内容。这项技术通过@Generable
等特性标记,为AI生成内容提供了类型安全和结构化的保障。
基础用法
基本数据结构定义
使用@Generable
宏可以标记需要结构化输出的Swift类型:
@Generable
struct Recipe {
let name: String
let ingredients: [String]
let instructions: [String]
let prepTime: Int
let difficulty: Difficulty
@Generable
enum Difficulty {
case easy
case medium
case hard
}
}
这种定义方式确保了生成的菜谱数据会严格遵循预定义的结构,每个字段都有明确的类型约束,大大提高了生成结果的可靠性和可用性。
高级控制技巧
使用@Guide注解精细控制
@Guide
注解提供了对生成内容的精细控制:
@Generable
struct MovieReview {
@Guide(description: "A catchy title for the review")
let title: String
@Guide(.range(1...10))
let rating: Int
@Guide(.count(3))
let pros: [String]
}
这些注解可以:
- 为字段提供生成提示
- 限制数值范围
- 控制数组元素数量
- 确保生成内容符合特定业务需求
正则表达式约束
对于需要特定格式的字段,可以使用正则表达式进行约束:
@Generable
struct Contact {
@Guide(Regex {
Capture {
ChoiceOf { "Mr"; "Mrs"; "Ms"; "Dr" }
}
". "
OneOrMore(.word)
})
let name: String
}
这种方式确保了生成的姓名格式统一,包含适当的称谓和格式。
复杂结构设计
嵌套数据结构
FoundationChat支持复杂的嵌套结构定义:
@Generable
struct TravelItinerary {
let days: [DayPlan]
@Generable
struct DayPlan {
let activities: [Activity]
let meals: Meals
}
}
这种设计允许构建多层次的复杂数据结构,适合旅游行程、项目计划等需要分层展示的场景。
可选字段处理
通过可选类型可以灵活处理不一定需要生成的字段:
@Generable
struct ProductDescription {
let warranty: String?
let technicalSpecs: TechnicalSpecs?
}
这种设计既保证了核心字段的必填性,又为可选信息提供了灵活性。
性能优化实践
生成会话优化
通过复用会话和选择性包含模式定义,可以提高生成效率:
class OptimizedGenerator {
private var hasGeneratedBefore = false
func generateProduct(prompt: String) async throws -> ProductDescription {
let response = try await session.respond(
to: prompt,
generating: ProductDescription.self,
includeSchemaInPrompt: !hasGeneratedBefore
)
hasGeneratedBefore = true
return response.content
}
}
首次生成后跳过模式定义的传输,可以显著减少请求负载,提高响应速度。
实际应用建议
- 明确需求:在定义结构前,明确需要哪些字段和约束
- 渐进式设计:从简单结构开始,逐步添加复杂性和约束
- 测试验证:对生成的样本数据进行充分验证
- 性能监控:关注生成时间和成功率,适时调整结构复杂度
FoundationChat的结构化输出功能为AI内容生成提供了可靠的基础设施,通过合理的设计和优化,可以在保证质量的同时获得良好的性能表现。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0372Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp课程中屏幕放大器知识点优化分析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
207
2.2 K

暂无简介
Dart
519
115

Ascend Extension for PyTorch
Python
62
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
577

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193