Eclipse Streamsheets 开源项目指南
项目介绍
Eclipse Streamsheets 是一款强大的数据处理工具,专为简化数据流处理而设计。它允许用户通过电子表格式的界面来定义和执行复杂的数据处理任务,无需深入编程知识。Streamsheets 支持多种数据源连接,使得数据预处理、转换、以及分析变得更加直观和高效。项目隶属于 Eclipse 基金会,致力于提供一个开放源码的环境,促进数据处理领域的创新与合作。
项目快速启动
要快速启动 Eclipse Streamsheets,你需要先确保你的开发环境已经安装了 Git 和 Java Development Kit (JDK) 8 或更高版本。
步骤1: 克隆项目
首先,通过Git克隆项目到本地:
git clone https://github.com/eclipse/streamsheets.git
步骤2: 构建项目
进入项目目录并使用Maven进行构建:
cd streamsheets
mvn clean install
步骤3: 运行 Streamsheets
构建完成后,你可以运行 Streamsheets 应用:
java -jar streamsheets-backend/target/eclipse-streamsheets-backend-*.jar
然后访问 http://localhost:8080 来开始使用 Streamsheets 的web界面。
应用案例和最佳实践
数据清洗示例
假设你有一个CSV文件需去除无效数据和统一日期格式,可以在 Streamsheets 中创建一个新的工作表,导入数据,利用其内置函数如 FILTER, REGEX_REPLACE 等完成清洗任务。
实时数据分析
Streamsheets 支持实时数据流的处理,适合监控系统日志或市场行情等场景。通过配置外部数据源(如MQTT broker),可以实时读取数据并立即执行分析操作。
典型生态项目
Eclipse Streamsheets 的生态系统包括但不限于与大数据平台(如Apache Kafka、Spark)的集成,支持数据的双向流动。例如,开发者可以将Streamsheets作为前端工具,将处理规则部署至Kafka主题中,或者从大数据存储(如Hadoop HDFS)读取数据进行分析,进一步增强了其在企业级数据处理方案中的灵活性和实用性。
通过参与社区贡献插件或扩展,Eclipse Streamsheets能够适应更多特定行业需求,成为数据工作者的强大助手。
此文档仅为快速入门指南,详细功能与高级用法请参考Eclipse Streamsheets的官方文档。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0106
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00