Eclipse Streamsheets 开源项目指南
项目介绍
Eclipse Streamsheets 是一款强大的数据处理工具,专为简化数据流处理而设计。它允许用户通过电子表格式的界面来定义和执行复杂的数据处理任务,无需深入编程知识。Streamsheets 支持多种数据源连接,使得数据预处理、转换、以及分析变得更加直观和高效。项目隶属于 Eclipse 基金会,致力于提供一个开放源码的环境,促进数据处理领域的创新与合作。
项目快速启动
要快速启动 Eclipse Streamsheets,你需要先确保你的开发环境已经安装了 Git 和 Java Development Kit (JDK) 8 或更高版本。
步骤1: 克隆项目
首先,通过Git克隆项目到本地:
git clone https://github.com/eclipse/streamsheets.git
步骤2: 构建项目
进入项目目录并使用Maven进行构建:
cd streamsheets
mvn clean install
步骤3: 运行 Streamsheets
构建完成后,你可以运行 Streamsheets 应用:
java -jar streamsheets-backend/target/eclipse-streamsheets-backend-*.jar
然后访问 http://localhost:8080 来开始使用 Streamsheets 的web界面。
应用案例和最佳实践
数据清洗示例
假设你有一个CSV文件需去除无效数据和统一日期格式,可以在 Streamsheets 中创建一个新的工作表,导入数据,利用其内置函数如 FILTER, REGEX_REPLACE 等完成清洗任务。
实时数据分析
Streamsheets 支持实时数据流的处理,适合监控系统日志或市场行情等场景。通过配置外部数据源(如MQTT broker),可以实时读取数据并立即执行分析操作。
典型生态项目
Eclipse Streamsheets 的生态系统包括但不限于与大数据平台(如Apache Kafka、Spark)的集成,支持数据的双向流动。例如,开发者可以将Streamsheets作为前端工具,将处理规则部署至Kafka主题中,或者从大数据存储(如Hadoop HDFS)读取数据进行分析,进一步增强了其在企业级数据处理方案中的灵活性和实用性。
通过参与社区贡献插件或扩展,Eclipse Streamsheets能够适应更多特定行业需求,成为数据工作者的强大助手。
此文档仅为快速入门指南,详细功能与高级用法请参考Eclipse Streamsheets的官方文档。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00