TorchTitan项目中高效保存EMA模型与训练状态的优化实践
2025-06-19 21:25:26作者:宣利权Counsellor
在分布式深度学习训练过程中,模型状态保存与恢复是一个关键环节。本文将以TorchTitan项目为例,深入探讨如何优化Exponential Moving Average(EMA)模型与训练状态的保存策略,实现训练过程的高效中断与恢复。
EMA模型保存的挑战
EMA模型作为训练过程中重要的辅助模型,其参数通过滑动平均方式更新,能够有效提升模型泛化能力。但在保存时面临两个主要挑战:
- 内存压力:同时保存主模型、优化器状态和EMA模型需要大量显存
- I/O阻塞:同步保存操作会中断训练流程,影响训练效率
传统保存方式的局限性
常见的实现方式是为EMA模型单独创建异步保存操作:
ema_state_dict = get_model_state_dict(ema)
ema_dcp_handle = dcp.async_save(ema_state_dict, ...)
ema_dcp_handle.result()
state_dict = {"model": model_state_dict, "optimizer": optimizer_state_dict}
model_dcp_handle = dcp.async_save(state_dict, ...)
这种方式存在明显缺陷:
- 需要等待EMA保存完成才能开始主模型保存
- 多个异步请求会增加内存压力
- 显存不足时可能导致OOM错误
优化方案:统一状态字典与异步保存
更优的解决方案是将所有状态统一组织到单个字典中,通过一次异步调用完成保存:
state_dict = {
"model": model_state_dict,
"optimizer": optimizer_state_dict,
"ema": get_model_state_dict(ema, options=StateDictOptions(cpu_offload=False))
}
dcp_handle = dcp.async_save(state_dict, ...)
关键技术点
-
CPU卸载技术:通过
StateDictOptions(cpu_offload=False)控制状态字典的存储位置,避免GPU显存不足 -
统一状态管理:将相关状态组织为层次化字典结构,便于后续加载时保持一致性
-
单次异步调用:符合"限制检查点为一个异步请求"的最佳实践,减少内存压力
实现建议
-
状态收集阶段:
- 使用统一的API获取各组件状态
- 合理设置CPU卸载选项
- 构建层次化的状态字典结构
-
保存阶段:
- 确保只在特定rank上执行保存操作
- 及时清理临时变量释放内存
- 必要时手动调用垃圾回收
-
恢复阶段:
- 保持相同的状态字典结构
- 注意各组件加载顺序
- 验证状态完整性
性能考量
- 内存效率:统一保存减少峰值内存使用量
- I/O效率:单次异步保存最小化训练中断时间
- 可扩展性:方案适应不同规模的模型和集群配置
通过这种优化方案,TorchTitan项目可以实现EMA模型和训练状态的高效保存与恢复,为长时间训练任务提供可靠的断点续训能力。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
348
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1