TorchTitan项目中高效保存EMA模型与训练状态的优化实践
2025-06-19 10:18:04作者:宣利权Counsellor
在分布式深度学习训练过程中,模型状态保存与恢复是一个关键环节。本文将以TorchTitan项目为例,深入探讨如何优化Exponential Moving Average(EMA)模型与训练状态的保存策略,实现训练过程的高效中断与恢复。
EMA模型保存的挑战
EMA模型作为训练过程中重要的辅助模型,其参数通过滑动平均方式更新,能够有效提升模型泛化能力。但在保存时面临两个主要挑战:
- 内存压力:同时保存主模型、优化器状态和EMA模型需要大量显存
- I/O阻塞:同步保存操作会中断训练流程,影响训练效率
传统保存方式的局限性
常见的实现方式是为EMA模型单独创建异步保存操作:
ema_state_dict = get_model_state_dict(ema)
ema_dcp_handle = dcp.async_save(ema_state_dict, ...)
ema_dcp_handle.result()
state_dict = {"model": model_state_dict, "optimizer": optimizer_state_dict}
model_dcp_handle = dcp.async_save(state_dict, ...)
这种方式存在明显缺陷:
- 需要等待EMA保存完成才能开始主模型保存
- 多个异步请求会增加内存压力
- 显存不足时可能导致OOM错误
优化方案:统一状态字典与异步保存
更优的解决方案是将所有状态统一组织到单个字典中,通过一次异步调用完成保存:
state_dict = {
"model": model_state_dict,
"optimizer": optimizer_state_dict,
"ema": get_model_state_dict(ema, options=StateDictOptions(cpu_offload=False))
}
dcp_handle = dcp.async_save(state_dict, ...)
关键技术点
-
CPU卸载技术:通过
StateDictOptions(cpu_offload=False)
控制状态字典的存储位置,避免GPU显存不足 -
统一状态管理:将相关状态组织为层次化字典结构,便于后续加载时保持一致性
-
单次异步调用:符合"限制检查点为一个异步请求"的最佳实践,减少内存压力
实现建议
-
状态收集阶段:
- 使用统一的API获取各组件状态
- 合理设置CPU卸载选项
- 构建层次化的状态字典结构
-
保存阶段:
- 确保只在特定rank上执行保存操作
- 及时清理临时变量释放内存
- 必要时手动调用垃圾回收
-
恢复阶段:
- 保持相同的状态字典结构
- 注意各组件加载顺序
- 验证状态完整性
性能考量
- 内存效率:统一保存减少峰值内存使用量
- I/O效率:单次异步保存最小化训练中断时间
- 可扩展性:方案适应不同规模的模型和集群配置
通过这种优化方案,TorchTitan项目可以实现EMA模型和训练状态的高效保存与恢复,为长时间训练任务提供可靠的断点续训能力。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
863
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K