TorchTitan项目中高效保存EMA模型与训练状态的优化实践
2025-06-19 21:25:26作者:宣利权Counsellor
在分布式深度学习训练过程中,模型状态保存与恢复是一个关键环节。本文将以TorchTitan项目为例,深入探讨如何优化Exponential Moving Average(EMA)模型与训练状态的保存策略,实现训练过程的高效中断与恢复。
EMA模型保存的挑战
EMA模型作为训练过程中重要的辅助模型,其参数通过滑动平均方式更新,能够有效提升模型泛化能力。但在保存时面临两个主要挑战:
- 内存压力:同时保存主模型、优化器状态和EMA模型需要大量显存
- I/O阻塞:同步保存操作会中断训练流程,影响训练效率
传统保存方式的局限性
常见的实现方式是为EMA模型单独创建异步保存操作:
ema_state_dict = get_model_state_dict(ema)
ema_dcp_handle = dcp.async_save(ema_state_dict, ...)
ema_dcp_handle.result()
state_dict = {"model": model_state_dict, "optimizer": optimizer_state_dict}
model_dcp_handle = dcp.async_save(state_dict, ...)
这种方式存在明显缺陷:
- 需要等待EMA保存完成才能开始主模型保存
- 多个异步请求会增加内存压力
- 显存不足时可能导致OOM错误
优化方案:统一状态字典与异步保存
更优的解决方案是将所有状态统一组织到单个字典中,通过一次异步调用完成保存:
state_dict = {
"model": model_state_dict,
"optimizer": optimizer_state_dict,
"ema": get_model_state_dict(ema, options=StateDictOptions(cpu_offload=False))
}
dcp_handle = dcp.async_save(state_dict, ...)
关键技术点
-
CPU卸载技术:通过
StateDictOptions(cpu_offload=False)控制状态字典的存储位置,避免GPU显存不足 -
统一状态管理:将相关状态组织为层次化字典结构,便于后续加载时保持一致性
-
单次异步调用:符合"限制检查点为一个异步请求"的最佳实践,减少内存压力
实现建议
-
状态收集阶段:
- 使用统一的API获取各组件状态
- 合理设置CPU卸载选项
- 构建层次化的状态字典结构
-
保存阶段:
- 确保只在特定rank上执行保存操作
- 及时清理临时变量释放内存
- 必要时手动调用垃圾回收
-
恢复阶段:
- 保持相同的状态字典结构
- 注意各组件加载顺序
- 验证状态完整性
性能考量
- 内存效率:统一保存减少峰值内存使用量
- I/O效率:单次异步保存最小化训练中断时间
- 可扩展性:方案适应不同规模的模型和集群配置
通过这种优化方案,TorchTitan项目可以实现EMA模型和训练状态的高效保存与恢复,为长时间训练任务提供可靠的断点续训能力。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248