Guidance项目中的模型响应处理技巧
2025-05-10 09:06:12作者:田桥桑Industrious
在Guidance项目中,处理大型语言模型(LLM)的响应输出是一个常见需求。许多开发者希望简单地获取模型生成的最终文本结果,而不需要处理复杂的中间过程或流式输出。本文将详细介绍几种在Guidance中高效获取和处理模型响应的方法。
基础响应获取
最基本的场景是获取模型对特定问题的直接回答。Guidance提供了简洁的语法来实现这一需求:
from guidance import guidance, models, select, user, assistant, system
lm = models.Transformers("microsoft/Phi-3-mini-4k-instruct", trust_remote_code=True, echo=False)
@guidance
def get_origin(lm, name):
with system():
lm += "确定名字最可能的来源国家"
with user():
lm += f"名字: {name}"
with assistant():
lm += "来源国家可能是: " + select(["印度", "巴西", "美国"], name="country")
return lm
name_list = ["张三", "李四", "王五"]
countries = []
for name in name_list:
result = lm + get_origin(name)
countries.append(result['country'])
这种方法特别适合分类任务,其中select函数限定了模型只能从给定选项中选择回答,结果存储在指定的变量名中。
结构化JSON响应处理
对于需要结构化输出的场景,Guidance提供了json函数,可以与Pydantic模型或JSON Schema配合使用:
from guidance import json as g_json
from pydantic import BaseModel
class 解题步骤(BaseModel):
解释: str
输出: str
class 数学解答(BaseModel):
步骤: list[解题步骤]
最终答案: str
@guidance
def 数学助手(lm, 问题):
with system():
lm += "以JSON格式写出解题步骤和最终答案"
with user():
lm += f"数学问题: {问题}"
with assistant():
lm += g_json("json_答案", schema=数学解答)
return lm
解答 = lm + 数学助手("(22 + 8) * 5")
解析结果 = json.loads(解答['json_答案'])
这种方法确保了输出的结构化,便于后续程序处理,同时保持了生成内容的灵活性。
响应处理的最佳实践
-
明确输出范围:使用
with语句块明确界定系统指令、用户输入和助手响应的范围 -
变量命名:为关键输出指定有意义的变量名,便于后续引用
-
结果提取:通过字典键或属性访问方式获取特定部分的生成内容
-
类型转换:对于JSON输出,使用标准库进行解析和类型转换
-
批量处理:结合循环结构实现多个输入的批量处理
Guidance的设计理念是平衡灵活性和易用性,开发者可以根据具体需求选择简单直接的响应获取方式,或者使用更高级的结构化输出功能。理解这些核心模式后,就能高效地处理各种模型响应场景。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895