Guidance项目中的模型响应处理技巧
2025-05-10 13:06:54作者:田桥桑Industrious
在Guidance项目中,处理大型语言模型(LLM)的响应输出是一个常见需求。许多开发者希望简单地获取模型生成的最终文本结果,而不需要处理复杂的中间过程或流式输出。本文将详细介绍几种在Guidance中高效获取和处理模型响应的方法。
基础响应获取
最基本的场景是获取模型对特定问题的直接回答。Guidance提供了简洁的语法来实现这一需求:
from guidance import guidance, models, select, user, assistant, system
lm = models.Transformers("microsoft/Phi-3-mini-4k-instruct", trust_remote_code=True, echo=False)
@guidance
def get_origin(lm, name):
with system():
lm += "确定名字最可能的来源国家"
with user():
lm += f"名字: {name}"
with assistant():
lm += "来源国家可能是: " + select(["印度", "巴西", "美国"], name="country")
return lm
name_list = ["张三", "李四", "王五"]
countries = []
for name in name_list:
result = lm + get_origin(name)
countries.append(result['country'])
这种方法特别适合分类任务,其中select
函数限定了模型只能从给定选项中选择回答,结果存储在指定的变量名中。
结构化JSON响应处理
对于需要结构化输出的场景,Guidance提供了json
函数,可以与Pydantic模型或JSON Schema配合使用:
from guidance import json as g_json
from pydantic import BaseModel
class 解题步骤(BaseModel):
解释: str
输出: str
class 数学解答(BaseModel):
步骤: list[解题步骤]
最终答案: str
@guidance
def 数学助手(lm, 问题):
with system():
lm += "以JSON格式写出解题步骤和最终答案"
with user():
lm += f"数学问题: {问题}"
with assistant():
lm += g_json("json_答案", schema=数学解答)
return lm
解答 = lm + 数学助手("(22 + 8) * 5")
解析结果 = json.loads(解答['json_答案'])
这种方法确保了输出的结构化,便于后续程序处理,同时保持了生成内容的灵活性。
响应处理的最佳实践
-
明确输出范围:使用
with
语句块明确界定系统指令、用户输入和助手响应的范围 -
变量命名:为关键输出指定有意义的变量名,便于后续引用
-
结果提取:通过字典键或属性访问方式获取特定部分的生成内容
-
类型转换:对于JSON输出,使用标准库进行解析和类型转换
-
批量处理:结合循环结构实现多个输入的批量处理
Guidance的设计理念是平衡灵活性和易用性,开发者可以根据具体需求选择简单直接的响应获取方式,或者使用更高级的结构化输出功能。理解这些核心模式后,就能高效地处理各种模型响应场景。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
226
2.28 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
989
586

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.43 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
214
288