从零开始创建二维激光SLAM项目安装和配置指南
2026-01-20 01:44:50作者:郁楠烈Hubert
1. 项目基础介绍和主要的编程语言
项目基础介绍
本项目名为“从零开始创建二维激光SLAM”,旨在通过手动实践,从零开始搭建一套二维激光SLAM系统。项目作者通过逐步深入学习SLAM,对现有的开源激光SLAM框架进行解读与改进,最终形成了一套属于自己的激光SLAM框架与架构。
主要的编程语言
项目主要使用C++编程语言,同时也涉及到一些ROS(Robot Operating System)的配置和使用。
2. 项目使用的关键技术和框架
关键技术
- 激光SLAM(Simultaneous Localization and Mapping):项目核心技术,用于同时进行定位和地图构建。
- PCL(Point Cloud Library):用于点云数据的处理和分析。
- GMapping:一种基于粒子滤波的SLAM算法,用于构建二维栅格地图。
- Hector SLAM:另一种常用的二维激光SLAM算法。
- PL-ICP(Point-to-Line ICP):一种改进的ICP算法,用于激光雷达数据的帧间匹配。
框架
- ROS(Robot Operating System):项目主要依赖的机器人操作系统,用于消息传递、节点管理等。
- G2O:一个用于图优化的C++库,用于SLAM的后端优化。
- Ceres Solver:一个用于非线性优化的C++库,用于SLAM的后端优化。
- GTSAM(Georgia Tech Smoothing and Mapping):一个用于状态估计和图优化的C++库。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
- 操作系统:Ubuntu 16.04
- ROS版本:Kinetic
- 依赖库:
- PCL 1.7
- ros-kinetic-libg2o
- ceres-solver 1.13.0
- gtsam 4.0.2
详细安装步骤
1. 安装ROS Kinetic
sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list'
sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654
sudo apt-get update
sudo apt-get install ros-kinetic-desktop-full
echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc
source ~/.bashrc
sudo apt-get install python-rosdep python-rosinstall python-rosinstall-generator python-wstool build-essential
sudo rosdep init
rosdep update
2. 创建ROS工作空间
mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/src
catkin_init_workspace
cd ~/catkin_ws
catkin_make
echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc
source ~/.bashrc
3. 克隆项目代码
cd ~/catkin_ws/src
git clone https://github.com/xiangli0608/Creating-2D-laser-slam-from-scratch.git
4. 安装项目依赖库
cd ~/catkin_ws/src/Creating-2D-laser-slam-from-scratch
chmod +x install_dependence.sh
./install_dependence.sh
5. 编译项目
cd ~/catkin_ws
catkin_make
6. 运行项目
根据项目文档中的说明,运行相应的节点。例如:
roslaunch lesson1 demo.launch
注意事项
- 如果在编译过程中遇到依赖库缺失的问题,请根据错误提示手动安装相应的依赖库。
- 项目中使用的数据集是作者自己录制的,可以通过提供的链接下载。
通过以上步骤,您应该能够成功安装和配置“从零开始创建二维激光SLAM”项目,并开始运行相应的节点进行实验和学习。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178