首页
/ Gorilla项目中RAFT微调LLaMA2-7B的数据格式解析

Gorilla项目中RAFT微调LLaMA2-7B的数据格式解析

2025-05-19 11:48:57作者:廉彬冶Miranda

在Gorilla项目的RAFT(Retrieval-Augmented Fine-Tuning)框架中,研究人员对LLaMA2-7B模型进行了最终微调。这一过程涉及特定的数据格式处理,值得深入探讨。

RAFT微调阶段采用了两种不同的数据表示形式。第一种是经过format.py转换后的jsonl格式,这种格式遵循了对话式结构,包含用户提问和助手回答两个角色。用户提问以"user"角色呈现,而助手回答则包含详细的推理过程(Chain-of-Thought)和最终答案,以"assistant"角色呈现。

第二种格式则更为结构化,集中包含了四个关键组成部分:问题(question)、上下文(context)、指令(instruction)和推理过程答案(CoT Answer)。这种格式更清晰地展现了RAFT框架的工作机制,其中上下文信息为模型提供了必要的背景知识,而推理过程则展示了模型如何逐步推导出最终答案。

从技术实现角度来看,RAFT框架最终采用的是第一种对话式jsonl格式进行模型微调。这种选择有几个重要原因:首先,它更贴近实际应用场景中的对话交互模式;其次,这种格式与LLaMA2等大语言模型的预训练格式更为一致,有利于模型的知识迁移;最后,它能够自然地容纳多轮对话场景。

值得注意的是,尽管第二种结构化格式没有直接用于最终微调,但它在研究论文中被用作说明RAFT工作原理的示意图。这种格式清晰地展示了RAFT框架如何整合检索到的上下文信息与原始问题,并通过指令引导模型生成包含推理过程的答案。

对于开发者而言,理解这两种格式的差异和联系至关重要。在实际应用中,可以根据具体需求选择适当的格式转换方法。对话式jsonl格式更适合端到端的对话系统开发,而结构化格式则便于分析和调试模型的推理过程。

Gorilla项目的这一设计体现了现代大语言模型微调的前沿思路,即通过精心设计的数据格式来引导模型学习复杂的推理能力,同时保持与预训练目标的连续性。这种平衡对于实现高质量的微调效果至关重要。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
223
2.26 K
flutter_flutterflutter_flutter
暂无简介
Dart
525
116
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
JavaScript
210
286
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
frameworksframeworks
openvela 操作系统专为 AIoT 领域量身定制。服务框架:主要包含蓝牙、电话、图形、多媒体、应用框架、安全、系统服务框架。
CMake
795
12
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
984
581
pytorchpytorch
Ascend Extension for PyTorch
Python
67
97
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
94
GLM-4.6GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
42
0