Google Shopping Merchant Datasources 0.1.7版本发布:新增商户和产品评论数据源支持
Google Shopping Merchant Datasources是Google为商家提供的一个数据源管理工具,它允许商家将各种类型的产品数据整合到Google Merchant Center中。这个工具的最新0.1.7版本带来了一些重要的功能更新和文档改进,特别是在评论数据源管理方面。
新增数据源类型支持
本次更新的核心内容是新增了对商户评论和产品评论数据源的支持:
-
商户评论数据源:新增了
MerchantReviewDataSource消息类型,专门用于指定商户评论的数据来源。商家现在可以通过这个类型明确标识评论数据的来源渠道。 -
产品评论数据源:同样新增了
ProductReviewDataSource消息类型,用于管理产品评论的数据源。这为商家管理产品评价提供了更清晰的途径。 -
数据源字段扩展:在现有的
DataSource消息中新增了两个字段:merchant_review_data_source:专门用于指定商户评论的数据源product_review_data_source:用于指定产品评论的数据源
这些新增功能使得商家能够更精确地管理和追踪评论数据的来源,有助于提高数据质量和分析能力。
文档改进与说明优化
除了功能增强外,本次更新还对多个文档注释进行了优化和澄清:
-
文件输入类型说明:
- 对
FileInputType枚举中的FETCH和GOOGLE_SHEETS值的注释进行了更新,使其含义更加明确
- 对
-
补充产品数据源说明:
- 改进了
SupplementalProductDataSource消息的注释 - 特别澄清了
feed_label字段的用途
- 改进了
-
文件输入认证信息:
- 更新了
FileInput消息中username和password字段的注释,使其安全性说明更加清晰
- 更新了
-
主产品数据源说明:
- 改进了
PrimaryProductDataSource消息中take_from_data_sources字段的注释,帮助开发者更好地理解其用途
- 改进了
技术意义与应用场景
这些更新对于使用Google Shopping Merchant Datasources的商家和开发者来说具有重要意义:
-
评论数据管理:新增的评论数据源支持使得商家能够更好地管理和分析客户反馈,有助于改进产品和服务质量。
-
数据源追踪:明确的数据源标识功能让商家能够更准确地追踪不同渠道的数据,便于进行数据质量控制和来源分析。
-
开发者体验:改进的文档注释减少了API使用中的歧义,提高了开发效率。
-
数据整合:通过更清晰的数据源定义,商家可以更灵活地整合来自不同渠道的产品信息和客户反馈。
这个版本的发布进一步丰富了Google Shopping Merchant Datasources的功能,特别是在客户反馈数据管理方面提供了更强大的工具,有助于商家提升在Google Shopping平台上的表现和客户体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00