Kokoro-onnx项目中的语音数据存储优化实践
背景介绍
Kokoro-onnx是一个基于ONNX的语音合成项目,其中需要存储和管理多种语音特征数据。在项目早期版本中,这些语音数据以JSON格式存储,每个语音特征向量被序列化为一个数组,保存在名为voices.json的文件中。
原始方案的问题
最初的实现采用了JSON格式,并使用indent=4参数使文件具有良好可读性。这种设计带来了两个主要问题:
-
存储空间浪费:JSON格式本身包含大量冗余字符(如引号、逗号、空格等),导致文件体积膨胀。一个包含11种语音特征的文件大小达到约51.5MB,其中仅空格字符就占据了146万多个。
-
加载效率低下:JSON解析需要处理大量无关字符,降低了数据加载速度,特别是在只需要使用其中部分语音数据时,仍需加载整个大文件。
优化方案探索
项目维护者考虑了多种优化方案:
-
JSON压缩:最简单的方案是去除JSON的缩进格式,将文件体积从51.5MB减少到约28MB,但这种方法提升有限。
-
NumPy数组存储:将每个语音特征保存为单独的.npy二进制文件,每个文件约512KB。这种方法可以按需加载,但会产生大量小文件,管理不便。
-
HDF5格式:使用h5py库将所有语音数据存储在单个HDF5文件中,体积可压缩到约5MB,同时保持高效随机访问能力。
最终实现方案
经过权衡,项目采用了NumPy的NPZ格式作为最终解决方案:
- 将所有语音特征数据存储在单个voices.npz文件中
- 文件体积从原来的51.5MB大幅减少到约5MB
- 保持了良好的访问性能
- 不需要额外依赖,因为项目已使用NumPy
NPZ格式是NumPy提供的压缩数组存储格式,特别适合存储多个数组数据。它基于ZIP压缩算法,在保证数据完整性的同时提供了良好的压缩率。
技术实现细节
优化后的实现主要做了以下改进:
- 使用torch.load加载原始语音数据后直接转换为NumPy数组
- 将所有语音数组收集到字典中,键为语音名称,值为对应的特征数组
- 使用np.savez_compressed函数将整个字典保存为压缩的NPZ文件
- 在运行时通过np.load按需访问特定语音数据
这种方案不仅大幅减少了存储空间,还提高了数据访问效率,为项目后续扩展更多语音功能奠定了基础。
总结
Kokoro-onnx项目通过优化语音数据存储方案,展示了在实际工程中如何权衡各种技术选项。从最初的JSON格式到最终的NPZ格式,每一步改进都基于对项目需求的深入理解:
- 从可读性优先转向性能优先
- 从文本格式转向二进制格式
- 从单一文件存储到压缩归档存储
这种优化思路对于其他需要处理大量特征数据的AI项目也具有参考价值,特别是在边缘计算和移动端应用场景下,存储和加载效率的优化尤为重要。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00