VLMEvalKit项目中使用自建VLLM服务的配置指南
2025-07-02 02:42:34作者:殷蕙予
在开源项目VLMEvalKit中,用户经常需要对接不同的语言模型服务进行评测。本文将详细介绍如何配置项目以使用本地搭建的VLLM服务,特别是针对LMDeploy部署方案的技术实现细节。
背景与需求
VLMEvalKit作为一个多功能视觉语言模型评测工具包,支持对接多种模型服务接口。在实际使用中,研究人员可能需要使用自己搭建的VLLM服务而非公共API,这主要出于以下考虑:
- 数据隐私和安全需求
- 定制化模型评测
- 本地化部署减少网络传输延迟
技术实现方案
项目通过LMDeployAPI类提供了对接本地VLLM服务的功能。核心配置位于vlmeval/config.py文件中,其中关键参数包括:
"lmdeploy": partial(
LMDeployAPI,
api_base="http://0.0.0.0:8000/v1/chat/completions",
temperature=0,
retry=10,
)
详细配置步骤
- 服务端准备:首先确保本地已正确部署VLLM服务,服务端口应与配置一致
- 配置文件修改:找到项目中的vlmeval/config.py文件,定位到LMDeployAPI配置部分
- 端口调整:将api_base参数中的端口号(8000)修改为实际服务端口
- 参数调优:根据实际需求调整temperature等参数
- 运行测试:使用命令行启动评测任务
运行命令示例
完成配置后,可通过以下命令启动评测任务:
python run.py --data MMBench_DEV_EN --model lmdeploy --verbose --api-nproc 16
其中关键参数说明:
- --data:指定评测数据集
- --model:指定使用的模型接口类型
- --api-nproc:设置并行处理数量
- --verbose:启用详细日志输出
注意事项
- 确保本地服务已启动且网络可达
- 系统安全设置需允许对应端口的通信
- 对于大规模评测,建议适当增加retry次数以提高稳定性
- 不同版本的VLLM服务可能需要调整API路径格式
性能优化建议
- 根据硬件资源合理设置--api-nproc参数
- 对于长时间运行的评测任务,考虑实现断点续评功能
- 监控服务端资源使用情况,避免内存溢出等问题
通过以上配置,研究人员可以充分利用本地计算资源,在保证数据安全的前提下进行高效的模型评测工作。这种方案特别适合需要处理特定数据或进行定制化评测的研究场景。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
519
3.69 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
761
182
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
301
347
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1