ModelContextProtocol C SDK 中提示不可见问题的分析与解决
在使用 ModelContextProtocol C# SDK 开发过程中,开发者可能会遇到一个常见问题:在 Claude Desktop 中创建的提示(prompt)无法正常显示。这个问题看似简单,但实际上涉及到了 SDK 的多个核心组件和配置要点。
问题现象
当开发者尝试通过 C# SDK 创建自定义提示时,按照标准方式定义提示类和方法后,在测试 Stdio 服务器与 Desktop Claude 交互时,发现定义的提示无法正常显示。具体表现为:
- 使用
McpServerPromptType特性标记的静态类 - 类中包含使用
McpServerPrompt和Description特性标注的方法 - 方法返回格式正确的
ChatMessage对象 - 通过
WithPromptsFromAssembly方法加载提示
尽管代码逻辑看似正确,但提示在客户端仍然不可见。
根本原因分析
经过深入分析,这个问题主要源于日志输出与 Stdio 传输协议之间的冲突。ModelContextProtocol 使用标准输入输出(stdin/stdout)作为默认的通信通道,而 .NET 的默认日志记录器会将日志输出到标准输出(stdout)。这导致了:
- 日志信息与协议消息混合在同一个输出流中
- Claude Desktop 无法正确解析混杂的协议消息
- 提示信息虽然生成但无法被客户端正确接收
解决方案
解决这个问题的关键在于正确配置日志输出通道。以下是推荐的解决方案:
var builder = Host.CreateApplicationBuilder();
// 关键配置:将所有日志重定向到标准错误输出(stderr)
builder.Logging.AddConsole(consoleLogOptions =>
{
consoleLogOptions.LogToStandardErrorThreshold = LogLevel.Trace;
});
builder.Services
.AddMcpServer()
.WithStdioServerTransport()
.WithPromptsFromAssembly()
.WithToolsFromAssembly();
var app = builder.Build();
await app.RunAsync();
这个配置确保了:
- 协议通信使用标准输出(stdout)保持纯净
- 所有日志信息被重定向到标准错误输出(stderr)
- 客户端和服务器之间的通信不受日志干扰
最佳实践建议
为了避免类似问题,建议开发者在 ModelContextProtocol C# SDK 项目中遵循以下实践:
- 日志分离:始终将日志输出与协议通信通道分离
- 环境检查:在开发阶段验证日志输出是否会影响协议通信
- 配置验证:使用简单的测试提示验证基本功能是否正常
- 版本兼容性:确保使用的 SDK 版本与客户端版本兼容
深入理解
这个问题实际上反映了分布式系统中一个常见的设计模式:关注点分离。在进程间通信(IPC)场景中,特别是使用标准输入输出作为通信通道时,必须确保:
- 通信通道专用于协议消息传输
- 调试和日志信息使用独立通道
- 错误处理不会干扰正常通信流程
ModelContextProtocol C# SDK 通过灵活的配置选项支持这种分离,但需要开发者正确理解和应用这些配置。
总结
在 ModelContextProtocol 生态系统中,C# SDK 提供了强大的功能来创建和管理 AI 提示。理解其底层通信机制和正确配置相关组件是确保功能正常工作的关键。通过将日志输出重定向到标准错误输出,开发者可以避免通信通道污染问题,确保提示能够正确显示在 Claude Desktop 客户端中。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00