Google Benchmark 迭代次数异常问题分析与解决
问题背景
在使用Google Benchmark进行性能测试时,开发者遇到了一个奇怪的迭代次数显示问题。测试用例包含两个基准测试:readFile和calculateAverages,但结果显示calculateAverages的迭代次数异常高(4046608次),而readFile只有1次,这与预期不符。
问题现象
测试代码的基本结构如下:
class One_BRC : public benchmark::Fixture {
protected:
std::map<std::string, std::vector<float>> _data;
public:
void SetUp(::benchmark::State &state) {}
void TearDown(::benchmark::State &state) {}
};
BENCHMARK_F(One_BRC, readFile)(benchmark::State &st) {
for (auto _: st) {
_data = readFile();
}
}
BENCHMARK_F(One_BRC, calculateAverages)(benchmark::State &st) {
for (auto _: st) {
calcAvr(_data);
}
}
测试结果输出:
One_BRC/readFile 1.5273e+11 ns 1.5268e+11 ns 1
One_BRC/calculateAverages 178 ns 178 ns 4046608
问题分析
-
编译器优化问题:Google Benchmark的工作原理是通过多次运行被测代码来获取稳定的性能数据。当被测代码执行时间过短时,框架会自动增加迭代次数以获得有意义的结果。然而,这里显示的异常高迭代次数表明编译器可能对代码进行了过度优化。
-
测试夹具生命周期:Google Benchmark中,每个测试用例都会创建新的测试夹具实例。这意味着
readFile测试中填充的_data并不会自动传递给calculateAverages测试,后者使用的是默认构造的空map。 -
数据未被使用:在
calculateAverages测试中,由于_data为空,calcAvr函数实际上没有做任何有意义的工作,导致执行时间极短(178ns),从而触发了框架的自动迭代次数调整机制。
解决方案
-
防止编译器优化:使用
benchmark::DoNotOptimize和benchmark::ClobberMemory来确保编译器不会优化掉关键代码。 -
共享测试数据:将测试数据定义为全局变量,确保在多个测试用例间共享。
修正后的代码:
std::map<std::string, std::vector<float>> _data;
class One_BRC : public benchmark::Fixture {
protected:
public:
void SetUp(::benchmark::State &state) {}
void TearDown(::benchmark::State &state) {}
};
BENCHMARK_DEFINE_F(One_BRC, readFile)(benchmark::State &st) {
for (auto _: st) {
_data = readFile();
benchmark::DoNotOptimize(_data);
}
}
BENCHMARK_DEFINE_F(One_BRC, calculateAverages)(benchmark::State &st) {
for (auto _: st) {
calcAvr(_data);
}
}
BENCHMARK_REGISTER_F(One_BRC, readFile);
BENCHMARK_REGISTER_F(One_BRC, calculateAverages);
修正后的结果
One_BRC/readFile 1675013 ns 1340255 ns 452
One_BRC/calculateAverages 2292709 ns 295267 ns 2323
性能测试最佳实践
-
确保测试数据的有效性:测试数据应该能够代表真实场景,且足够大以避免测量误差。
-
防止编译器优化:对于关键变量和计算结果,使用
DoNotOptimize确保它们不会被优化掉。 -
理解测试夹具生命周期:每个测试用例都会创建新的测试夹具实例,需要特别注意测试数据的共享问题。
-
合理设置迭代次数:对于执行时间较短的测试,可以手动设置最小迭代时间(
MinTime)以获得更稳定的结果。 -
多次运行取平均值:考虑使用
Repetitions选项多次运行整个测试套件,获取更可靠的统计数据。
通过以上分析和修正,我们不仅解决了迭代次数异常的问题,还对Google Benchmark的使用有了更深入的理解,为后续的性能测试工作打下了良好的基础。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00