Google Benchmark 迭代次数异常问题分析与解决
问题背景
在使用Google Benchmark进行性能测试时,开发者遇到了一个奇怪的迭代次数显示问题。测试用例包含两个基准测试:readFile和calculateAverages,但结果显示calculateAverages的迭代次数异常高(4046608次),而readFile只有1次,这与预期不符。
问题现象
测试代码的基本结构如下:
class One_BRC : public benchmark::Fixture {
protected:
std::map<std::string, std::vector<float>> _data;
public:
void SetUp(::benchmark::State &state) {}
void TearDown(::benchmark::State &state) {}
};
BENCHMARK_F(One_BRC, readFile)(benchmark::State &st) {
for (auto _: st) {
_data = readFile();
}
}
BENCHMARK_F(One_BRC, calculateAverages)(benchmark::State &st) {
for (auto _: st) {
calcAvr(_data);
}
}
测试结果输出:
One_BRC/readFile 1.5273e+11 ns 1.5268e+11 ns 1
One_BRC/calculateAverages 178 ns 178 ns 4046608
问题分析
-
编译器优化问题:Google Benchmark的工作原理是通过多次运行被测代码来获取稳定的性能数据。当被测代码执行时间过短时,框架会自动增加迭代次数以获得有意义的结果。然而,这里显示的异常高迭代次数表明编译器可能对代码进行了过度优化。
-
测试夹具生命周期:Google Benchmark中,每个测试用例都会创建新的测试夹具实例。这意味着
readFile测试中填充的_data并不会自动传递给calculateAverages测试,后者使用的是默认构造的空map。 -
数据未被使用:在
calculateAverages测试中,由于_data为空,calcAvr函数实际上没有做任何有意义的工作,导致执行时间极短(178ns),从而触发了框架的自动迭代次数调整机制。
解决方案
-
防止编译器优化:使用
benchmark::DoNotOptimize和benchmark::ClobberMemory来确保编译器不会优化掉关键代码。 -
共享测试数据:将测试数据定义为全局变量,确保在多个测试用例间共享。
修正后的代码:
std::map<std::string, std::vector<float>> _data;
class One_BRC : public benchmark::Fixture {
protected:
public:
void SetUp(::benchmark::State &state) {}
void TearDown(::benchmark::State &state) {}
};
BENCHMARK_DEFINE_F(One_BRC, readFile)(benchmark::State &st) {
for (auto _: st) {
_data = readFile();
benchmark::DoNotOptimize(_data);
}
}
BENCHMARK_DEFINE_F(One_BRC, calculateAverages)(benchmark::State &st) {
for (auto _: st) {
calcAvr(_data);
}
}
BENCHMARK_REGISTER_F(One_BRC, readFile);
BENCHMARK_REGISTER_F(One_BRC, calculateAverages);
修正后的结果
One_BRC/readFile 1675013 ns 1340255 ns 452
One_BRC/calculateAverages 2292709 ns 295267 ns 2323
性能测试最佳实践
-
确保测试数据的有效性:测试数据应该能够代表真实场景,且足够大以避免测量误差。
-
防止编译器优化:对于关键变量和计算结果,使用
DoNotOptimize确保它们不会被优化掉。 -
理解测试夹具生命周期:每个测试用例都会创建新的测试夹具实例,需要特别注意测试数据的共享问题。
-
合理设置迭代次数:对于执行时间较短的测试,可以手动设置最小迭代时间(
MinTime)以获得更稳定的结果。 -
多次运行取平均值:考虑使用
Repetitions选项多次运行整个测试套件,获取更可靠的统计数据。
通过以上分析和修正,我们不仅解决了迭代次数异常的问题,还对Google Benchmark的使用有了更深入的理解,为后续的性能测试工作打下了良好的基础。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00