Quiver:Keras模型的交互式可视化工具
2024-09-19 19:57:29作者:裴麒琰
项目介绍
Quiver 是一个专为 Keras 模型设计的交互式卷积神经网络(CNN)特征可视化工具。通过 Quiver,用户可以直观地探索和分析模型在不同层次上的激活情况,从而更好地理解模型的内部工作机制。无论是深度学习新手还是经验丰富的研究人员,Quiver 都能帮助你更深入地理解你的模型,优化模型性能。
项目技术分析
Quiver 的核心技术基于 Keras,这是一个广泛使用的深度学习框架。通过与 Keras 的无缝集成,Quiver 能够直接读取和处理 Keras 模型,并生成丰富的可视化结果。Quiver 的技术栈还包括 React 和 Redux,用于构建用户友好的前端界面,以及 Webpack 和 npm 用于前端资源的打包和部署。
项目及技术应用场景
Quiver 的应用场景非常广泛,特别适合以下几种情况:
- 模型调试与优化:通过可视化模型各层的激活情况,开发者可以快速定位模型中的问题,如过拟合或欠拟合,从而进行针对性的优化。
- 教学与研究:对于深度学习课程或研究项目,Quiver 可以作为教学工具,帮助学生和研究人员直观地理解卷积神经网络的工作原理。
- 模型解释性分析:在需要向非技术背景的利益相关者解释模型决策过程时,Quiver 提供的可视化结果可以作为有力的解释工具。
项目特点
Quiver 具有以下几个显著特点:
- 简单易用:只需一行代码即可启动可视化服务,无需复杂的配置。
- 交互性强:用户可以通过界面直观地探索不同层次的激活情况,支持多种交互操作。
- 高度定制化:支持自定义输入数据、模型类别、显示数量等参数,满足不同用户的需求。
- 开源社区支持:Quiver 是一个开源项目,拥有活跃的社区支持,用户可以轻松获取帮助或贡献代码。
快速开始
安装
pip install quiver_engine
如果你想使用最新的开发版本,可以通过以下命令安装:
pip install git+git://github.com/keplr-io/quiver.git
使用
只需一行代码即可启动 Quiver 可视化服务:
from quiver_engine import server
server.launch(model)
这将启动一个本地服务器,并在 localhost:5000
上提供可视化界面。
高级选项
Quiver 提供了丰富的配置选项,例如:
server.launch(
model, # Keras 模型
classes=['cat', 'dog'], # 模型输出的类别
top=5, # 显示的预测结果数量
temp_folder='./tmp', # 临时文件存储路径
input_folder='./', # 输入图像文件夹
port=5000, # 服务器端口
mean=[123.568, 124.89, 111.56], # 自定义数据均值
std=[52.85, 48.65, 51.56] # 自定义数据标准差
)
开发与贡献
从源码构建
如果你想从源码构建 Quiver,可以按照以下步骤操作:
cd quiver_engine
python setup.py develop
构建前端
cd quiverboard
npm install
export QUIVER_URL=localhost:5000
npm start
如果你想直接构建前端文件,可以使用以下命令:
npm run deploy:prod
致谢
Quiver 的开发受到了 deepvis 和 fchollet 的相关工作的启发。前端界面基于 react-redux-starter-kit 构建。
引用 Quiver
如果你在研究中使用了 Quiver,请引用以下信息:
misc{bianquiver,
title={Quiver},
author={Bian, Jake},
year={2016},
publisher={GitHub},
howpublished={\url{https://github.com/keplr-io/quiver}},
}
Quiver 是一个强大且易用的工具,无论你是深度学习的初学者还是专家,它都能帮助你更好地理解和优化你的模型。快来试试吧!
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析2 freeCodeCamp音乐播放器项目中的函数调用问题解析3 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析4 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析5 freeCodeCamp课程视频测验中的Tab键导航问题解析6 freeCodeCamp课程中屏幕放大器知识点优化分析7 freeCodeCamp Cafe Menu项目中link元素的void特性解析8 freeCodeCamp英语课程填空题提示缺失问题分析9 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133