首页
/ X-AnyLabeling 标签排序优化:自然排序算法实践

X-AnyLabeling 标签排序优化:自然排序算法实践

2025-06-08 19:13:57作者:滕妙奇

在图像标注工具 X-AnyLabeling 中,标签列表的排序方式直接影响用户的工作效率。近期开发团队发现并修复了一个常见的排序问题:当标签名称包含数字时,默认的字符串排序会导致不符合用户预期的顺序。

问题背景

在软件开发中,字符串排序通常会采用字典序(lexicographical order)的方式。这种排序方式对于纯文本表现良好,但当字符串中包含数字时,就会出现不符合人类直觉的结果。例如,标签序列 "0, 1, 2, 10, 11" 会被排序为 "0, 1, 10, 11, 2"。

这种排序问题在图像标注场景中尤为明显,因为用户经常使用数字编号来命名对象标签。不合理的排序会导致用户在查找和管理标签时效率降低,影响标注工作流程。

解决方案:自然排序算法

X-AnyLabeling 采用了自然排序(Natural Sort)算法来解决这一问题。自然排序是一种混合排序算法,它能够智能地识别字符串中的数字部分和非数字部分:

  1. 将字符串分割为数字和非数字的交替序列
  2. 对数字部分按数值大小进行比较
  3. 对非数字部分保持字典序比较
  4. 综合比较结果确定最终顺序

这种算法确保了 "2" 会排在 "10" 前面,同时保持非数字部分的合理排序,完全符合人类的自然排序预期。

技术实现细节

在 Qt 框架的 QListWidget 中实现自然排序需要重写排序比较函数。X-AnyLabeling 的具体实现包括:

  1. 自定义比较函数,解析字符串中的数字和非数字部分
  2. 逐个比较分割后的部分,数字部分转换为数值进行比较
  3. 处理前导零等特殊情况
  4. 保持大小写不敏感的比较特性

这种实现方式既保持了 Qt 控件的高效性,又提供了更符合用户预期的排序结果。

实际应用效果

经过优化后,X-AnyLabeling 中的标签列表现在能够正确显示:

0, 1, 2, 3, ..., 9, 10, 11, ..., 20, 21

而不是之前的:

0, 1, 10, 11, 2, 20, 21, 3, ...

这一改进显著提升了用户体验,特别是在处理大量编号标签时,用户可以更快速、直观地找到需要的标签。

总结

X-AnyLabeling 通过引入自然排序算法,解决了数字标签排序不符合用户预期的问题。这一改进展示了开发团队对用户体验细节的关注,也体现了优秀软件应该具备的"符合人类直觉"的设计理念。对于其他需要处理混合数字和文本排序的应用程序,这一解决方案同样具有参考价值。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
59
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133