MedSAM项目中的点标注与涂鸦标注模型解析
项目背景
MedSAM是bowang-lab团队开发的一个专注于医学图像分割的开源项目。该项目最初发布了MedSAM和轻量级版本Lite-MedSAM,并提供了3DSlicer集成模块,为医学图像分割领域带来了创新解决方案。近期,项目团队进一步扩展了功能,推出了支持点标注(point prompt)和涂鸦标注(scribble prompt)的分支框架,这一进展为医学图像的交互式分割提供了更灵活的工具。
涂鸦标注模型的关键特性
在LiteMedSAMScribble分支中,项目团队实现了一个基于涂鸦提示的轻量级分割模型。该模型的核心特点包括:
-
训练数据全面性:模型使用了完整的训练数据集进行微调,确保了在各种医学图像上的泛化能力。
-
标注方式灵活性:不同于传统的精确标注要求,该模型支持通过简单的点或涂鸦进行交互式分割,大大降低了标注门槛。
-
轻量化设计:继承了Lite-MedSAM的轻量级特性,保持了高效推理的优势。
技术实现细节
涂鸦标注模型的训练采用了迁移学习策略,基于原有的Lite-MedSAM模型进行微调。训练过程中特别关注了:
-
涂鸦标注数据的处理:设计了专门的损失函数来处理不精确的涂鸦标注,使模型能够从粗糙的标注中学习精确的分割边界。
-
交互式分割优化:模型架构针对多次交互进行了优化,能够快速响应用户的点或涂鸦输入,实现实时分割效果。
-
医学图像特性适配:针对医学图像中常见的低对比度、复杂结构等特点,模型在特征提取和融合方面做了专门设计。
使用注意事项
开发团队在模型发布后持续优化使用体验,解决了几个关键问题:
-
可视化工具集成:补充了缺失的可视化模块(utils.visualizer),确保用户能够直观查看分割结果。
-
模型访问权限:及时开放了预训练模型的访问权限,方便研究者下载使用。
-
代码结构优化:调整了项目目录结构,使各功能模块的组织更加清晰合理。
应用前景
这种支持点标注和涂鸦标注的交互式分割模型,在临床医学图像分析中具有重要价值:
-
降低使用门槛:医生无需精确标注,简单标记即可获得良好分割效果。
-
提高工作效率:支持快速迭代调整,显著缩短分割时间。
-
适应多样场景:可应用于CT、MRI等多种模态的医学图像分析。
随着项目的持续发展,这种交互式分割方法有望成为医学图像分析的标准工具之一,为精准医疗提供有力支持。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00