在nnUNet项目中使用LibTorch C++ API进行模型预测的完整指南
2025-06-02 06:47:32作者:何举烈Damon
前言
在医学图像分割领域,nnUNet因其出色的性能和易用性而广受欢迎。本文将详细介绍如何将训练好的nnUNet 2D模型转换为LibTorch C++可用的格式,并实现完整的预测流程,包括数据预处理、模型加载和推理等关键步骤。
模型导出与转换
首先需要将训练好的PyTorch模型导出为适合C++环境使用的格式。nnUNet支持两种主要导出方式:
- TorchScript格式导出:
example = torch.rand(1, 3, 224, 224)
traced_script_module = torch.jit.trace(model, example)
traced_script_module.save("model.pt")
- ONNX格式导出:
torch.onnx.export(model, example, "model.onnx")
对于nnUNet模型,建议使用TorchScript格式,因为它能更好地保留PyTorch特有的操作和动态特性。
数据预处理实现
nnUNet的预测流程需要严格遵循训练时的数据预处理步骤。主要预处理步骤包括:
- 图像归一化:将像素值归一化到[0,1]范围
- 重采样:将图像重采样到目标分辨率
- 裁剪/填充:确保图像尺寸符合模型输入要求
- 通道处理:处理多通道输入
在C++中实现这些预处理步骤时,可以参考nnUNetPredictor的Python实现,使用OpenCV或ITK等库完成相应操作。
LibTorch C++预测实现
环境配置
首先需要配置LibTorch环境:
- 下载对应版本的LibTorch库
- 配置CMake项目
- 链接必要的库文件
核心代码实现
#include <torch/script.h>
#include <opencv2/opencv.hpp>
// 加载模型
torch::jit::script::Module load_model(const std::string& path) {
torch::jit::script::Module module;
try {
module = torch::jit::load(path);
} catch (const c10::Error& e) {
std::cerr << "Error loading the model\n";
exit(-1);
}
return module;
}
// 预处理函数
torch::Tensor preprocess(cv::Mat image) {
// 实现与Python端一致的预处理逻辑
// 包括归一化、重采样、裁剪等操作
// ...
return tensor;
}
// 执行预测
void predict(torch::jit::script::Module& model, const torch::Tensor& input) {
std::vector<torch::jit::IValue> inputs;
inputs.push_back(input);
auto output = model.forward(inputs).toTensor();
// 处理输出结果
}
部署注意事项
- 版本一致性:确保训练环境与部署环境的PyTorch/LibTorch版本一致
- 输入验证:严格验证输入数据的尺寸、类型和数值范围
- 性能优化:对于生产环境,可以考虑启用推理模式、使用半精度等优化手段
- 内存管理:注意C++环境中的内存管理,避免内存泄漏
常见问题解决
- 模型加载失败:检查模型路径和LibTorch版本
- 输入尺寸不匹配:确保预处理后的张量尺寸与模型预期一致
- 性能问题:启用OpenMP并行计算,使用GPU加速
结语
将nnUNet模型部署到C++环境需要仔细处理模型导出、数据预处理和推理流程的每个环节。通过本文介绍的方法,开发者可以构建高效、稳定的医学图像分割系统。实际部署时,建议先在Python环境中验证完整的预测流程,再逐步迁移到C++实现。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178