Open edX DevStack 使用教程
1. 项目介绍
Open edX DevStack 是一个用于快速启动和开发 Open edX 服务的工具。它提供了一系列脚本和配置文件,帮助开发者快速搭建一个完整的 Open edX 开发环境。DevStack 主要用于开发和扩展 Open edX 服务,支持从源代码快速部署 Open edX 云环境。
2. 项目快速启动
2.1 环境准备
在开始之前,确保你的系统满足以下要求:
- 操作系统:Linux(推荐 Ubuntu)
- Docker 和 Docker Compose 已安装
- Git 已安装
2.2 克隆项目
首先,克隆 DevStack 项目到本地:
git clone https://github.com/openedx/devstack.git
cd devstack
2.3 启动 DevStack
使用以下命令启动 DevStack:
make dev.up
这个命令会启动所有必要的容器,并配置 Open edX 环境。
2.4 访问 Open edX
启动完成后,你可以通过以下地址访问 Open edX:
- LMS(学习管理系统): http://localhost:18000
- Studio(课程创作工具): http://localhost:18010
3. 应用案例和最佳实践
3.1 开发新功能
DevStack 是开发新功能和扩展 Open edX 服务的理想工具。开发者可以在本地环境中快速测试和调试代码,而无需担心影响生产环境。
3.2 测试和调试
DevStack 提供了一个完整的 Open edX 环境,开发者可以在此环境中进行各种测试和调试工作。例如,测试新开发的插件或模块,调试已有的功能等。
3.3 学习 Open edX
对于新接触 Open edX 的开发者,DevStack 提供了一个快速入门的环境。通过在本地搭建 Open edX 环境,开发者可以更好地理解 Open edX 的架构和功能。
4. 典型生态项目
4.1 Tutor
Tutor 是另一个用于部署和管理 Open edX 的工具,它提供了更简单的部署方式和更丰富的功能。对于生产环境的部署,推荐使用 Tutor。
4.2 Open edX Platform
Open edX Platform 是 Open edX 的核心项目,包含了 LMS 和 Studio 等核心组件。DevStack 是基于 Open edX Platform 构建的,因此开发者可以通过 DevStack 深入了解 Open edX Platform 的内部机制。
4.3 Open edX Mobile
Open edX Mobile 是 Open edX 的移动端应用,支持在移动设备上访问 Open edX 课程。开发者可以通过 DevStack 搭建的本地环境,测试和开发 Open edX Mobile 的功能。
通过以上内容,你可以快速上手 Open edX DevStack,并开始开发和扩展 Open edX 服务。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00