LangChain项目中ChatDeepSeek模型的消息裁剪问题解析
在LangChain项目中使用ChatDeepSeek模型时,开发者可能会遇到一个常见的技术挑战:当尝试使用trim_messages
工具对聊天消息进行裁剪时,系统会抛出NotImplementedError
异常。这个问题源于LangChain的默认实现与DeepSeek模型之间的兼容性问题,本文将深入分析问题原因并提供专业解决方案。
问题背景分析
LangChain框架提供了一个非常实用的trim_messages
功能,它允许开发者根据token限制自动裁剪聊天历史记录。这一功能在构建对话系统时尤为重要,特别是在处理长对话或上下文丰富的场景时。然而,当开发者尝试将这一功能与ChatDeepSeek模型结合使用时,系统会报告get_num_tokens_from_messages()
方法未实现的错误。
技术原因剖析
问题的根本原因在于LangChain的OpenAI集成模块默认使用cl100k_base
分词器来计算token数量,而这一实现并未针对DeepSeek模型进行适配。DeepSeek模型使用自己的分词机制,与OpenAI的标准实现存在差异,导致系统无法正确计算消息的token数量。
专业解决方案
为了解决这一问题,我们需要实现一个自定义的token计数器。以下是专业推荐的实现方案:
- 使用HuggingFace的AutoTokenizer:这是最直接且可靠的方法,能够准确反映DeepSeek模型的实际token使用情况。
from transformers import AutoTokenizer
from langchain_core.messages import BaseMessage
from typing import Union, List
def count_tokens(messages: Union[str, List[BaseMessage]], tokenizer_dir: str = "./") -> int:
tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir, trust_remote_code=True)
if isinstance(messages, str):
return len(tokenizer.encode(messages))
text = "".join(
msg.content if msg.type == "system" else
f"用户:{msg.content}" if msg.type == "human" else
f"助手:{msg.content}<|endoftext|>"
for msg in messages
)
if not text.startswith("<|startoftext|>"):
text = "<|startoftext|>" + text
return len(tokenizer.encode(text))
- 集成到LangChain流程中:将自定义的token计数器与
trim_messages
功能结合使用:
from langchain_openai import ChatDeepSeek
from langchain_core.messages import trim_messages
llm = ChatDeepSeek(model="deepseek-chat")
messages = [("system", "将英文翻译为中文"), ("human", "I love programming")]
trimmed = trim_messages(messages, max_tokens=16384, strategy="last", token_counter=count_tokens)
response = llm.invoke(trimmed)
实现细节说明
-
分词器初始化:使用
AutoTokenizer.from_pretrained
加载DeepSeek模型的分词器,需要确保本地有相应的分词器文件。 -
消息格式处理:按照DeepSeek模型的对话格式规范处理消息,包括添加特殊的开始和结束标记。
-
token计算:对格式化后的完整对话文本进行编码并计算token数量。
最佳实践建议
-
性能优化:在实际应用中,建议缓存分词器实例以避免重复初始化。
-
错误处理:增加对分词器加载失败和编码异常的处理逻辑。
-
本地化部署:将分词器文件部署在项目目录中,减少对外部网络的依赖。
-
测试验证:在关键业务场景中,建议对比在线和离线token计算结果,确保一致性。
通过上述方案,开发者可以完美解决LangChain中ChatDeepSeek模型的消息裁剪问题,构建更加稳定可靠的对话系统。这一解决方案不仅适用于当前问题,其思路也可以推广到其他需要自定义token计算逻辑的场景中。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









