开源项目安装与配置指南:LangGraph Agents with Amazon Bedrock
1. 项目基础介绍
LangGraph Agents with Amazon Bedrock 是一个开源项目,它基于 LangChain 和 Tavily 的课程内容,由 Harrison Chase 和 Rotem Weiss 创建,并在 DeepLearning.AI 上提供。该项目旨在探索最新的 AI 代理人和代理工作流程,利用功能调用 LLMs(大型语言模型)和专用工具,如代理搜索。项目通过 Jupyter Notebooks 实验室的形式,帮助用户理解 LangGraph 框架及其背后的概念,并学习如何与 Amazon Bedrock 一起使用。
该项目主要使用的编程语言是 Python 和 Jupyter Notebook。
2. 项目使用的关键技术和框架
- LangChain: 一个开源库,用于构建基于代理的工作流程。
- LangGraph: LangChain 的扩展,用于构建复杂的代理人行为。
- Amazon Bedrock: 一种基于云的机器学习服务,提供了对大型语言模型的访问。
- Jupyter Notebook: 用于代码编写、执行和文档制作的环境。
3. 项目安装和配置的准备工作与详细步骤
准备工作
在开始安装前,请确保您的系统满足以下要求:
- Python 3.10 或更高版本
- 安装了 Git
- 有权访问 AWS 服务(如 Amazon SageMaker)
安装步骤
-
克隆项目仓库
打开命令行界面,运行以下命令克隆项目仓库:
git clone https://github.com/aws-samples/langgraph-agents-with-amazon-bedrock.git -
安装操作系统依赖
根据您的操作系统安装所需的依赖。以下是 Ubuntu/Debian 系统的安装命令:
sudo apt update sudo apt-get install graphviz graphviz-dev python3-dev pip install pipx pipx install poetry pipx ensurepath source ~/.bashrc对于其他操作系统,请参考 Graphviz 安装指南。
-
创建虚拟环境并安装 Python 依赖
切换到项目目录,并运行以下命令创建虚拟环境并安装依赖:
cd langgraph-agents-with-amazon-bedrock export POETRY_VIRTUALENVS_PATH="$PWD/.venv" export INITIAL_WORKING_DIRECTORY=$(pwd) poetry shell cd $INITIAL_WORKING_DIRECTORY poetry install -
添加 Jupyter 内核
在虚拟环境中,添加新创建的 Python 环境到 Jupyter Notebook 服务器可用的内核列表:
poetry run python -m ipykernel install --user --name agents-dev-env -
设置 Tavily API 密钥
访问 Tavily 并创建一个免费的 API 密钥。
-
配置本地环境变量
创建一个名为
.env的文件,复制env.tmp文件的内容到.env。确保将 AWS 区域设置为所需的区域(默认为us-east-1)。cp env.tmp .env -
存储 Tavily API 密钥
您可以选择将 Tavily API 密钥直接复制到
.env文件中,或者使用 AWS Secrets Manager 存储密钥,并在 SageMaker 执行角色中添加权限策略。
完成以上步骤后,您就可以开始使用该项目了。确保在 Jupyter Notebook 中选择 agents-dev-env 内核。
以上就是 LangGraph Agents with Amazon Bedrock 项目的详细安装和配置指南。祝您使用愉快!
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementPersist and reuse KV Cache to speedup your LLM.Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00