OpenJDK Eclipse OpenJ9 项目中虚拟线程饥饿问题的GC断言失败分析
问题背景
在OpenJDK 24版本的Eclipse OpenJ9项目中,测试用例java/lang/Thread/virtual/Starvation.java在执行时触发了GC断言失败。这个问题最初在macOS平台上被发现,随后在s390x Linux和Windows平台上也出现了类似的失败情况。
错误现象
测试执行过程中,GC子系统触发了断言失败,具体错误信息显示在HeapRegionManager.hpp文件的第283行:
** ASSERTION FAILED ** at HeapRegionManager.hpp:283: ((false && (heapAddress < _highTableEdge)))
在s390x Linux平台上,类似的断言失败出现在第282行:
** ASSERTION FAILED ** at HeapRegionManager.hpp:282: ((false && (heapAddress >= _lowTableEdge)))
根本原因分析
经过深入调查,发现问题出在Write Once Compactor的Fixup路径中缺少对虚拟栈分配对象的检查。当Compactor Fixup在扫描continuation虚拟栈时发现了栈分配对象,却错误地将其假设为堆对象,从而导致断言失败。
具体来说,这个问题发生在Balanced GC场景下,与虚拟线程(VThread)的栈处理相关。测试用例使用了VThreadPinner.runPinned()功能,该功能强制虚拟线程在同步块内恢复到原始的固定行为。
技术细节
从调用栈分析可以看出,问题发生在以下关键路径:
- 虚拟线程栈帧的扫描过程中
- 通过jitWalkStackFrames和walkContinuationStackFrames遍历栈帧
- WriteOnceCompactor尝试处理continuation对象时
- 最终在HeapRegionManager中触发断言失败
核心问题在于Compactor Fixup路径未能正确识别栈分配对象与堆对象的区别,导致对非堆内存地址进行了堆区域管理器的查询操作。
解决方案
修复方案主要是在Write Once Compactor的Fixup路径中添加对虚拟栈分配对象的检查逻辑,确保能够正确识别栈分配对象,避免将其误认为堆对象进行处理。
该修复被认为是低风险的,适用于所有仍可提交的分支。在OpenJDK 24版本中,这个问题最终在0.51分支上得到了修复。
影响范围
这个问题最初在macOS平台上被发现,但后续测试表明它影响多个平台,包括:
- x86-64 macOS
- s390x Linux
- x86-64 Windows
- aarch64 Linux
所有使用Balanced GC并且涉及虚拟线程continuation对象处理的场景都可能受到影响。
总结
这个案例展示了在GC实现中处理新型语言特性(如虚拟线程)时可能遇到的边缘情况。它强调了在内存管理子系统中,对不同类型的对象(堆对象、栈分配对象等)进行精确区分的重要性。通过这个问题的分析和修复,OpenJ9团队进一步完善了对虚拟线程和continuation对象的支持,提高了GC子系统的健壮性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00