PyMC v5.23.0 版本发布:新增变换功能与性能优化
项目简介
PyMC 是一个功能强大的 Python 概率编程框架,它允许用户构建复杂的概率模型并进行贝叶斯推断。作为开源项目,PyMC 在统计学、机器学习和科学研究领域有着广泛的应用。最新发布的 v5.23.0 版本带来了一些重要的新功能和改进。
核心变更与功能增强
1. PyTensor 依赖升级带来的广播行为变更
本次版本升级了 PyTensor 依赖,这一变更对高级 set_subtensor 操作中的运行时广播行为产生了影响。在之前的版本中,某些形式的运行时广播是被允许的,但在 v5.23.0 中,这些操作现在会引发错误。这一变化有助于提高代码的明确性和一致性,虽然可能需要用户对现有代码进行少量调整,但长远来看有助于避免潜在的错误。
2. Minibatch 移除变换
新版本引入了一个实用的变换功能,可以从模型中移除 Minibatch。这一特性对于需要在不同训练阶段切换批量大小的场景特别有用。通过这个变换,开发者可以更灵活地控制模型的训练过程,特别是在处理大规模数据集时,能够更高效地进行内存管理。
3. 新增有序变换类型
v5.23.0 实现了两种新的有序变换:
- 反向有序变换 (reversed ordered)
- 严格正有序变换 (strictly positive ordered)
这些变换扩展了 PyMC 处理有序变量的能力,为建模提供了更多可能性。特别是在需要约束变量保持特定顺序关系的场景下,这些变换能够简化模型构建过程。
实用工具与改进
1. 采样测试工具
新版本添加了一个公共测试函数来模拟 sample 操作。这一工具对于开发和测试自定义采样器或验证模型行为非常有用,可以节省开发者在测试阶段的时间。
2. 潜在高斯过程条件分布优化
在潜在高斯过程的条件分布计算中,现在默认使用 SVD(奇异值分解)方法。这一变更提高了数值稳定性和计算效率,特别是在处理病态协方差矩阵时表现更为稳健。
文档与维护改进
1. 文档增强
- 新增了 GP 工具模块的文档,使高斯过程相关功能的查找和使用更加方便
- 更新了文档主题,改善了阅读体验
- 优化了 Model.profile 方法的文档字符串和类型提示,使API更加清晰
2. 符号归一化常数优化
在维护方面,新版本不再将随机变量包含在符号归一化常数中。这一优化有助于提高计算效率,特别是在处理复杂模型时。
总结
PyMC v5.23.0 版本在功能扩展和性能优化方面都做出了有价值的贡献。从新增的变换功能到计算方法的改进,这些变化都使得 PyMC 作为一个概率编程框架更加完善和强大。对于现有用户,建议关注 PyTensor 依赖升级可能带来的广播行为变化,同时探索新版本提供的各种新功能来提升建模体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00