CogDL 项目使用教程
1. 项目目录结构及介绍
CogDL 项目的目录结构如下:
CogDL/
├── cogdl/
│ ├── datasets/
│ ├── models/
│ ├── layers/
│ ├── options.py
│ ├── utils.py
│ └── ...
├── docs/
├── examples/
├── scripts/
├── tests/
├── third_party/
├── .flake8
├── .gitignore
├── .gitmodules
├── .pre-commit-config.yaml
├── .readthedocs.yml
├── .travis.yml
├── LICENSE
├── MANIFEST.in
├── README.md
├── README_CN.md
├── gnn_papers.md
├── pyproject.toml
├── results.md
└── setup.py
目录结构介绍
-
cogdl/: 核心代码目录,包含数据集、模型、层、配置文件和工具函数等。
- datasets/: 存放各种图数据集的处理代码。
- models/: 存放各种图神经网络模型的实现代码。
- layers/: 存放图神经网络的层实现代码。
- options.py: 配置选项文件,定义了命令行参数和配置项。
- utils.py: 工具函数文件,包含一些常用的辅助函数。
-
docs/: 项目文档目录,包含项目的详细文档和教程。
-
examples/: 示例代码目录,包含一些使用 CogDL 的示例代码。
-
scripts/: 脚本目录,包含一些用于训练和测试的脚本。
-
tests/: 测试代码目录,包含项目的单元测试代码。
-
third_party/: 第三方库目录,包含一些依赖的第三方库。
-
.flake8: 代码风格检查配置文件。
-
.gitignore: Git 忽略文件配置。
-
.gitmodules: Git 子模块配置文件。
-
.pre-commit-config.yaml: 预提交钩子配置文件。
-
.readthedocs.yml: Read the Docs 配置文件。
-
.travis.yml: Travis CI 配置文件。
-
LICENSE: 项目许可证文件。
-
MANIFEST.in: 打包配置文件。
-
README.md: 项目介绍文件,包含项目的概述和使用说明。
-
README_CN.md: 中文项目介绍文件。
-
gnn_papers.md: 图神经网络相关论文列表。
-
pyproject.toml: Python 项目配置文件。
-
results.md: 实验结果记录文件。
-
setup.py: 项目安装脚本。
2. 项目启动文件介绍
CogDL 项目的启动文件主要位于 scripts/ 目录下,其中 train.py 是最常用的启动文件。
scripts/train.py
train.py 是 CogDL 项目的主要启动文件,用于训练和测试图神经网络模型。通过命令行参数可以指定数据集、模型、超参数等。
使用示例
python scripts/train.py --dataset cora --model gcn --hidden-size 64 --epochs 200
--dataset: 指定数据集名称,如cora、citeseer等。--model: 指定模型名称,如gcn、gat等。--hidden-size: 指定隐藏层大小。--epochs: 指定训练轮数。
3. 项目配置文件介绍
CogDL 项目的配置文件主要位于 cogdl/ 目录下,其中 options.py 是主要的配置文件。
cogdl/options.py
options.py 文件定义了命令行参数和配置项,用于控制模型的训练和测试过程。
主要配置项
dataset: 数据集名称,如cora、citeseer等。model: 模型名称,如gcn、gat等。hidden_size: 隐藏层大小。epochs: 训练轮数。lr: 学习率。dropout: 丢弃率。
使用示例
from cogdl import experiment
# 基本用法
experiment(dataset="cora", model="gcn")
# 设置其他超参数
experiment(dataset="cora", model="gcn", hidden_size=32, epochs=200)
通过 options.py 文件,用户可以方便地配置和调整模型的训练参数。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00