CogDL 项目使用教程
1. 项目目录结构及介绍
CogDL 项目的目录结构如下:
CogDL/
├── cogdl/
│ ├── datasets/
│ ├── models/
│ ├── layers/
│ ├── options.py
│ ├── utils.py
│ └── ...
├── docs/
├── examples/
├── scripts/
├── tests/
├── third_party/
├── .flake8
├── .gitignore
├── .gitmodules
├── .pre-commit-config.yaml
├── .readthedocs.yml
├── .travis.yml
├── LICENSE
├── MANIFEST.in
├── README.md
├── README_CN.md
├── gnn_papers.md
├── pyproject.toml
├── results.md
└── setup.py
目录结构介绍
-
cogdl/: 核心代码目录,包含数据集、模型、层、配置文件和工具函数等。
- datasets/: 存放各种图数据集的处理代码。
- models/: 存放各种图神经网络模型的实现代码。
- layers/: 存放图神经网络的层实现代码。
- options.py: 配置选项文件,定义了命令行参数和配置项。
- utils.py: 工具函数文件,包含一些常用的辅助函数。
-
docs/: 项目文档目录,包含项目的详细文档和教程。
-
examples/: 示例代码目录,包含一些使用 CogDL 的示例代码。
-
scripts/: 脚本目录,包含一些用于训练和测试的脚本。
-
tests/: 测试代码目录,包含项目的单元测试代码。
-
third_party/: 第三方库目录,包含一些依赖的第三方库。
-
.flake8: 代码风格检查配置文件。
-
.gitignore: Git 忽略文件配置。
-
.gitmodules: Git 子模块配置文件。
-
.pre-commit-config.yaml: 预提交钩子配置文件。
-
.readthedocs.yml: Read the Docs 配置文件。
-
.travis.yml: Travis CI 配置文件。
-
LICENSE: 项目许可证文件。
-
MANIFEST.in: 打包配置文件。
-
README.md: 项目介绍文件,包含项目的概述和使用说明。
-
README_CN.md: 中文项目介绍文件。
-
gnn_papers.md: 图神经网络相关论文列表。
-
pyproject.toml: Python 项目配置文件。
-
results.md: 实验结果记录文件。
-
setup.py: 项目安装脚本。
2. 项目启动文件介绍
CogDL 项目的启动文件主要位于 scripts/
目录下,其中 train.py
是最常用的启动文件。
scripts/train.py
train.py
是 CogDL 项目的主要启动文件,用于训练和测试图神经网络模型。通过命令行参数可以指定数据集、模型、超参数等。
使用示例
python scripts/train.py --dataset cora --model gcn --hidden-size 64 --epochs 200
--dataset
: 指定数据集名称,如cora
、citeseer
等。--model
: 指定模型名称,如gcn
、gat
等。--hidden-size
: 指定隐藏层大小。--epochs
: 指定训练轮数。
3. 项目配置文件介绍
CogDL 项目的配置文件主要位于 cogdl/
目录下,其中 options.py
是主要的配置文件。
cogdl/options.py
options.py
文件定义了命令行参数和配置项,用于控制模型的训练和测试过程。
主要配置项
dataset
: 数据集名称,如cora
、citeseer
等。model
: 模型名称,如gcn
、gat
等。hidden_size
: 隐藏层大小。epochs
: 训练轮数。lr
: 学习率。dropout
: 丢弃率。
使用示例
from cogdl import experiment
# 基本用法
experiment(dataset="cora", model="gcn")
# 设置其他超参数
experiment(dataset="cora", model="gcn", hidden_size=32, epochs=200)
通过 options.py
文件,用户可以方便地配置和调整模型的训练参数。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0107DuiLib_Ultimate
DuiLib_Ultimate是duilib库的增强拓展版,库修复了大量用户在开发使用中反馈的Bug,新增了更加贴近产品开发需求的功能,并持续维护更新。C++03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile03
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选









