CogDL 项目使用教程
1. 项目目录结构及介绍
CogDL 项目的目录结构如下:
CogDL/
├── cogdl/
│ ├── datasets/
│ ├── models/
│ ├── layers/
│ ├── options.py
│ ├── utils.py
│ └── ...
├── docs/
├── examples/
├── scripts/
├── tests/
├── third_party/
├── .flake8
├── .gitignore
├── .gitmodules
├── .pre-commit-config.yaml
├── .readthedocs.yml
├── .travis.yml
├── LICENSE
├── MANIFEST.in
├── README.md
├── README_CN.md
├── gnn_papers.md
├── pyproject.toml
├── results.md
└── setup.py
目录结构介绍
-
cogdl/: 核心代码目录,包含数据集、模型、层、配置文件和工具函数等。
- datasets/: 存放各种图数据集的处理代码。
- models/: 存放各种图神经网络模型的实现代码。
- layers/: 存放图神经网络的层实现代码。
- options.py: 配置选项文件,定义了命令行参数和配置项。
- utils.py: 工具函数文件,包含一些常用的辅助函数。
-
docs/: 项目文档目录,包含项目的详细文档和教程。
-
examples/: 示例代码目录,包含一些使用 CogDL 的示例代码。
-
scripts/: 脚本目录,包含一些用于训练和测试的脚本。
-
tests/: 测试代码目录,包含项目的单元测试代码。
-
third_party/: 第三方库目录,包含一些依赖的第三方库。
-
.flake8: 代码风格检查配置文件。
-
.gitignore: Git 忽略文件配置。
-
.gitmodules: Git 子模块配置文件。
-
.pre-commit-config.yaml: 预提交钩子配置文件。
-
.readthedocs.yml: Read the Docs 配置文件。
-
.travis.yml: Travis CI 配置文件。
-
LICENSE: 项目许可证文件。
-
MANIFEST.in: 打包配置文件。
-
README.md: 项目介绍文件,包含项目的概述和使用说明。
-
README_CN.md: 中文项目介绍文件。
-
gnn_papers.md: 图神经网络相关论文列表。
-
pyproject.toml: Python 项目配置文件。
-
results.md: 实验结果记录文件。
-
setup.py: 项目安装脚本。
2. 项目启动文件介绍
CogDL 项目的启动文件主要位于 scripts/ 目录下,其中 train.py 是最常用的启动文件。
scripts/train.py
train.py 是 CogDL 项目的主要启动文件,用于训练和测试图神经网络模型。通过命令行参数可以指定数据集、模型、超参数等。
使用示例
python scripts/train.py --dataset cora --model gcn --hidden-size 64 --epochs 200
--dataset: 指定数据集名称,如cora、citeseer等。--model: 指定模型名称,如gcn、gat等。--hidden-size: 指定隐藏层大小。--epochs: 指定训练轮数。
3. 项目配置文件介绍
CogDL 项目的配置文件主要位于 cogdl/ 目录下,其中 options.py 是主要的配置文件。
cogdl/options.py
options.py 文件定义了命令行参数和配置项,用于控制模型的训练和测试过程。
主要配置项
dataset: 数据集名称,如cora、citeseer等。model: 模型名称,如gcn、gat等。hidden_size: 隐藏层大小。epochs: 训练轮数。lr: 学习率。dropout: 丢弃率。
使用示例
from cogdl import experiment
# 基本用法
experiment(dataset="cora", model="gcn")
# 设置其他超参数
experiment(dataset="cora", model="gcn", hidden_size=32, epochs=200)
通过 options.py 文件,用户可以方便地配置和调整模型的训练参数。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00