DenseSharp 项目启动和配置教程
2025-05-28 19:12:28作者:庞队千Virginia
1. 项目目录结构及介绍
DenseSharp 是一个基于 Keras 的 3D Deep Learning 项目,用于从 CT 扫描中预测肿瘤的侵袭性。以下是项目的目录结构及其介绍:
DenseSharp/
├── mylib/
│ ├── dataloader/
│ │ └── ENVIRON.py
│ ├── models/
│ │ ├── __init__.py
│ │ ├── denseSharp.py
│ │ ├── denseNet.py
│ │ └── losses.py
│ ├── utils/
│ │ ├── __init__.py
│ │ ├── plot3d.py
│ │ └── process.py
│ └── explore.ipynb
├── train.py
├── README.md
├── .gitignore
└── LICENSE
mylib/: 包含项目的核心库文件。dataloader/: 数据加载器,包含数据集和加载数据的方法。models/: 模型文件,包括 3D DenseSharp 和 DenseNet 模型以及损失函数和度量。utils/: 实用工具,包括绘图和多进程工具。explore.ipynb: Jupyter Notebook 文件,用于可视化网络和基本的数据探索。
train.py: 训练脚本,用于启动模型训练。README.md: 项目说明文件,包含项目介绍和使用说明。.gitignore: Git 忽略文件,指定 Git 应该忽略的文件和目录。LICENSE: 项目许可证文件,本项目采用 Apache-2.0 许可证。
2. 项目的启动文件介绍
项目的启动文件是 train.py,这个脚本负责初始化和启动训练过程。以下是启动文件的基本结构和功能:
# 导入必要的库和模块
from mylib.models.denseSharp import DenseSharp
from mylib.dataloader import ENVIRON
# 设置训练环境
ENVIRON.setup()
# 初始化模型
model = DenseSharp(input_shape=(80, 80, 80, 1))
# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# 训练模型
model.fit(x_train, y_train, epochs=10, batch_size=32, validation_data=(x_val, y_val))
在实际使用中,需要根据实际的数据集路径和参数配置来修改 train.py 文件。
3. 项目的配置文件介绍
项目的配置文件是位于 mylib/dataloader/ 目录下的 ENVIRON.py 文件。这个文件包含了数据集的路径和加载参数,是项目运行的重要配置。以下是一个基本的配置示例:
class ENVIRON:
def setup(self):
# 设置数据集路径
self.dataset_path = 'path/to/dataset'
# 设置其他参数
self.batch_size = 32
self.num_classes = 2
# 其他配置...
在运行项目前,需要确保 ENVIRON.py 文件中的配置参数正确无误,特别是数据集的路径,否则项目无法正确加载数据。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C065
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 单总线CPU设计实训代码:计算机组成原理最佳学习资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
457
3.41 K
Ascend Extension for PyTorch
Python
264
296
暂无简介
Dart
709
169
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
176
64
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
412
React Native鸿蒙化仓库
JavaScript
284
331
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
689
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
420
130