EasyScheduler中JVM内存指标计算错误导致Master过载误判问题分析
2025-05-17 04:21:59作者:宣利权Counsellor
问题背景
在分布式任务调度系统EasyScheduler中,Master节点负责任务调度和资源管理。系统通过监控JVM内存使用情况来判断Master节点是否过载,当内存使用率超过阈值时会触发过载保护机制,停止接收新任务。然而在实际运行中发现,即使系统内存资源充足,Master节点也会频繁被误判为过载状态,导致调度任务无法正常提交。
问题根源分析
通过对系统监控指标和代码实现的深入分析,发现问题的根源在于JVM内存使用率计算逻辑存在缺陷。当前实现直接从Micrometer指标系统中获取jvm.memory.used和jvm.memory.max指标值进行计算,但忽略了这两个指标实际上包含多个维度的数据。
在JVM内存监控中,内存区域被划分为多个部分,每个部分都有独立的used和max值:
- 堆内存(Heap):包括Eden Space、Survivor Space、Old Gen等区域
- 非堆内存(Non-Heap):包括Metaspace、Code Cache、Compressed Class Space等区域
当前代码直接从指标系统中获取第一个测量值进行比较,可能导致跨区域比较的错误场景,例如:
- 使用Eden Space的used值与Code Cache的max值比较
- 使用Survivor Space的used值与Metaspace的max值比较
这种错误的比较方式会导致计算出的内存使用率失真,当某个小内存区域的used值与大内存区域的max值比较时,可能计算出超过100%的使用率,从而触发错误的过载判断。
技术细节剖析
从实际监控数据可以看到,JVM内存指标具有多维标签特性:
- area标签:标识内存区域类型(heap/nonheap)
- id标签:标识具体内存区域名称
正确的实现应该按照相同维度聚合指标值后再进行计算:
- 堆内存使用率 = 所有heap区域的used总和 / 所有heap区域的max总和
- 非堆内存使用率 = 所有nonheap区域的used总和 / 所有nonheap区域的max总和
当前实现的主要问题在于:
- 直接使用Meter.measure().iterator().next()获取第一个测量值
- 没有考虑指标的多维度特性
- 跨区域比较导致计算结果失真
解决方案
针对这个问题,我们提出以下改进方案:
-
指标聚合计算:
- 分别聚合heap和nonheap区域的used和max值
- 计算各区域的内存使用率
-
代码重构:
double jvmHeapUsed = meterRegistry.find("jvm.memory.used")
.tag("area", "heap")
.meters().stream()
.mapToDouble(m -> m.measure().iterator().next().getValue())
.sum();
double jvmHeapMax = meterRegistry.find("jvm.memory.max")
.tag("area", "heap")
.meters().stream()
.mapToDouble(m -> m.measure().iterator().next().getValue())
.sum();
double jvmNonHeapUsed = meterRegistry.find("jvm.memory.used")
.tag("area", "nonheap")
.meters().stream()
.mapToDouble(m -> m.measure().iterator().next().getValue())
.sum();
double jvmNonHeapMax = meterRegistry.find("jvm.memory.max")
.tag("area", "nonheap")
.meters().stream()
.mapToDouble(m -> m.measure().iterator().next().getValue())
.sum();
- 使用率计算优化:
- 采用加权平均计算整体JVM内存使用率
- 增加各区域使用率的详细监控
实施效果
经过上述改进后,系统能够:
- 准确计算各内存区域的实际使用率
- 避免跨区域比较导致的误判
- 提供更精细化的内存监控数据
- 确保过载保护机制基于真实系统负载触发
经验总结
这个案例给我们带来以下技术启示:
- 在使用监控指标时,必须充分理解指标的多维度特性
- 直接获取指标值而不考虑标签维度可能导致严重错误
- 系统保护机制的触发条件需要基于准确的监控数据
- 对于JVM内存监控,应该区分不同区域分别计算使用率
通过这个问题的分析和解决,不仅修复了EasyScheduler中的过载误判问题,也为类似系统的指标监控实现提供了有价值的参考。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
283
26