使用Node.js SDK实现faster-whisper-server的音频转录与翻译
2025-07-09 23:21:06作者:昌雅子Ethen
faster-whisper-server是一个基于Fast Whisper模型的语音识别服务,提供了HTTP和WebSocket两种接口方式。本文将详细介绍如何使用Node.js SDK与faster-whisper-server进行交互,实现音频文件的转录和翻译功能。
环境准备与配置
在开始使用前,需要确保开发环境满足以下要求:
- Node.js环境(建议使用LTS版本)
- FFmpeg工具(版本7.0或以上)
- 相关npm包:
ws、node-fetch、form-data、fluent-ffmpeg、dotenv等
配置.env环境变量文件,包含以下关键配置项:
FFMPEG_PATH=/usr/bin/ffmpeg
TRANSCRIPTION_API_BASE_URL=http://your-server-address
TRANSLATION_API_BASE_URL=http://your-server-address
音频文件处理基础
在使用faster-whisper-server前,通常需要对音频文件进行预处理。WebSocket接口目前仅支持PCM格式的音频数据,因此需要进行格式转换。
const convertToPcm = async (filePath) => {
const pcmFilePath = filePath.replace(path.extname(filePath), '.pcm');
await new Promise((resolve, reject) => {
ffmpeg(filePath)
.audioChannels(1) // 单声道
.audioFrequency(16000) // 16kHz采样率
.audioCodec('pcm_s16le') // PCM signed 16-bit little-endian
.toFormat('s16le')
.on('end', resolve)
.on('error', reject)
.save(pcmFilePath);
});
return pcmFilePath;
};
此函数将任意音频文件转换为单声道、16kHz采样率的PCM格式,这是语音识别模型处理的最佳格式。
HTTP接口实现音频转录
faster-whisper-server的HTTP转录接口支持多种音频格式,包括WAV、MP3、WEBM等。实现代码如下:
const transcribeFile = async (filePath, model, language, responseFormat, temperature) => {
const formData = new FormData();
formData.append('file', fs.createReadStream(filePath));
formData.append('model', model);
formData.append('language', language);
formData.append('response_format', responseFormat);
formData.append('temperature', temperature);
const response = await fetch(`${process.env.TRANSCRIPTION_API_BASE_URL}/v1/audio/transcriptions`, {
method: 'POST',
body: formData,
});
return await response.json();
};
参数说明:
model: 指定使用的语音识别模型language: 指定音频语言代码(如'en'表示英语)responseFormat: 响应格式(如'json')temperature: 控制生成文本的随机性(0表示确定性最高)
HTTP接口实现音频翻译
翻译接口目前主要支持将其他语言翻译为英语:
const translateFile = async (filePath, model, responseFormat, temperature) => {
const formData = new FormData();
formData.append('file', fs.createReadStream(filePath));
formData.append('model', model);
formData.append('response_format', responseFormat);
formData.append('temperature', temperature);
const response = await fetch(`${process.env.TRANSLATION_API_BASE_URL}/v1/audio/translations`, {
method: 'POST',
body: formData,
});
return await response.json();
};
WebSocket实时音频转录
对于需要实时处理的场景,WebSocket接口提供了更高效的交互方式:
const sendAudioOverWebSocket = (filePath, model, language, responseFormat, temperature) => {
const wsUrl = `ws://your-server-address/v1/audio/transcriptions?model=${encodeURIComponent(model)}&language=${encodeURIComponent(language)}&response_format=${encodeURIComponent(responseFormat)}&temperature=${encodeURIComponent(temperature)}`;
const ws = new WebSocket(wsUrl);
ws.on('open', () => {
const audioBuffer = fs.readFileSync(filePath);
ws.send(audioBuffer);
});
ws.on('message', (message) => {
console.log('Transcript:', JSON.parse(message));
});
ws.on('error', console.error);
};
实际应用示例
综合使用上述功能:
async function main() {
const model = 'Systran/faster-whisper-large-v3';
const language = 'en';
const responseFormat = 'json';
const temperature = '0';
const filePath = './audio.webm';
// 格式转换
const pcmFilePath = await convertToPcm(filePath);
// HTTP转录
const transcription = await transcribeFile(pcmFilePath, model, language, responseFormat, temperature);
console.log('Transcription:', transcription);
// HTTP翻译
const translation = await translateFile(pcmFilePath, model, responseFormat, temperature);
console.log('Translation:', translation);
// WebSocket转录
await sendAudioOverWebSocket(pcmFilePath, model, language, responseFormat, temperature);
}
性能优化建议
- 批量处理:对于大量音频文件,可以实现批量处理队列
- 流式处理:对大文件可采用流式上传方式,减少内存占用
- 错误处理:增加重试机制和错误处理逻辑
- 结果缓存:对相同音频文件实现结果缓存,避免重复处理
常见问题解决
- FFmpeg版本问题:确保使用7.0或以上版本,Ubuntu 22.04或更新系统才能支持
- 音频质量问题:低质量音频可能导致识别率下降,建议预处理时进行降噪
- 语言支持:确认模型支持的目标语言
- 网络问题:对于大文件,确保网络稳定或考虑分片上传
通过本文介绍的方法,开发者可以轻松地将faster-whisper-server的语音识别和翻译功能集成到Node.js应用中,满足各种语音处理场景的需求。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
476
3.54 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
94
暂无简介
Dart
726
175
React Native鸿蒙化仓库
JavaScript
287
339
Ascend Extension for PyTorch
Python
284
317
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19