Rasterio中warp.reproject平均重采样方法的精度问题分析
2025-07-02 03:04:35作者:仰钰奇
问题背景
在使用Rasterio库进行栅格数据重投影时,发现当使用warp.reproject函数配合Resampling.average方法处理大型栅格数据时,会出现计算结果不准确的情况。具体表现为:当输入栅格尺寸为10000×10000时,平均重采样结果明显错误;而将输入栅格缩小到1000×1000时,计算结果则恢复正常。
问题复现
通过创建一个简单的测试案例可以清晰地复现这个问题。我们创建一个10000×10000的二维数组,其中第10-200列设置为1,其余为0。然后尝试将其重采样到10×10的输出尺寸。
import numpy as np
from rasterio import warp, transform
in_shape = (10000, 10000)
in_array = np.zeros(in_shape)
in_array[:,10:200] = 1
out_shape = (10,10)
out_array = np.full(out_shape, np.nan)
_ = warp.reproject(
source=in_array,
destination=out_array,
src_crs="EPSG:8857",
dst_crs="EPSG:8857",
src_transform=transform.from_bounds(0, 0, *in_shape, *in_shape),
dst_transform=transform.from_bounds(0, 0, *in_shape, *out_shape),
resampling=warp.Resampling.average)
问题表现
- 错误结果:使用平均重采样时,第二列出现了不应存在的值,而第一列的平均值计算也不正确。
- 对比测试:当使用双线性重采样(
Resampling.bilinear)时,结果符合预期,虽然这不是我们想要的平均值。 - 尺寸影响:当输入栅格尺寸缩小到1000×1000时,平均重采样方法又能正常工作。
技术分析
这个问题实际上已经在Rasterio 1.4.2版本中得到修复。经过分析,这很可能是GDAL底层库的bug,在GDAL 3.8.4版本中存在,而在后续的3.9.3版本中得到了修复。
平均重采样方法在处理超大栅格时出现问题的原因可能是:
- 数值精度问题:在处理超大栅格时,累加过程中可能出现数值溢出或精度损失。
- 内存管理问题:超大栅格可能导致内部缓冲区管理出现问题。
- 并行处理问题:重采样过程中的并行计算可能在某些边界条件下出现同步错误。
解决方案
对于遇到类似问题的用户,建议采取以下措施:
- 升级Rasterio:升级到1.4.2或更高版本。
- 升级GDAL:确保使用的GDAL版本在3.9.3或以上。
- 分块处理:如果必须使用旧版本,可以考虑将大栅格分块处理后再合并结果。
- 验证结果:对于关键计算,建议使用不同重采样方法进行交叉验证。
技术建议
在处理大型栅格数据时,还应注意以下最佳实践:
- 内存监控:大型栅格操作可能消耗大量内存,应监控内存使用情况。
- 分块处理:对于超大型数据集,考虑使用分块处理策略。
- 结果验证:对于重采样结果,特别是使用平均等统计方法时,应进行抽样验证。
- 日志记录:记录数据处理过程中的关键参数和中间结果,便于问题排查。
结论
栅格数据处理中的重采样是一个复杂的过程,特别是在处理大型数据集时,各种边界条件和数值精度问题都可能导致意外结果。这次发现的平均重采样问题提醒我们,在使用地理空间数据处理工具时,保持软件版本更新非常重要,同时对于关键计算结果应进行必要的验证。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
316
2.74 K
仓颉编译器源码及 cjdb 调试工具。
C++
124
852
Ascend Extension for PyTorch
Python
155
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
246
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
241
85
暂无简介
Dart
606
136
React Native鸿蒙化仓库
JavaScript
239
310
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.02 K