Hyperledger Besu中Clique共识测试不稳定的分析与解决
在Hyperledger Besu项目的持续集成测试过程中,开发团队发现了一个与Clique共识机制相关的测试稳定性问题。这个问题主要出现在CliqueProposeRpcAcceptanceTest测试类中,表现为多个测试方法在不同时间点会随机失败。
问题现象
测试失败主要表现为两种形式:
-
区块高度验证失败:测试期望区块高度达到某个特定值,但实际值低于预期。例如测试期望区块高度至少为2,但实际只达到了1。
-
验证人列表验证失败:测试期望验证人列表包含特定地址,但实际列表中缺少某些预期地址。这种情况表明新的验证人没有被成功添加到网络中。
问题分析
从测试失败的模式来看,这些问题都与Clique共识机制下的验证人管理功能相关。Clique是区块链平台的一种POA(Proof of Authority)共识算法,它通过现有验证人对新验证人的建议进行投票来决定是否接受新的验证人。
测试不稳定的根本原因可能包括:
-
网络同步问题:测试节点之间可能存在同步延迟,导致某些节点没有及时收到最新的区块或验证人变更信息。
-
区块生成时间问题:Clique共识依赖于定期生成区块,如果区块生成间隔设置不当,可能导致测试等待时间不足。
-
投票机制问题:验证人变更需要获得足够多的投票,测试中可能没有正确等待投票过程完成。
解决方案
开发团队针对这个问题采取了多方面的改进措施:
-
调整测试等待逻辑:优化了测试中对区块高度和验证人列表变更的等待策略,确保有足够的时间让网络达成共识。
-
改进进程管理:更新了Gradle测试进程的处理方式,确保测试环境更加稳定可靠。
-
增强验证条件检查:完善了测试断言逻辑,使其能够更准确地检测共识状态。
经验总结
分布式共识算法的测试具有天然的复杂性,特别是在涉及多节点交互和异步通信的场景下。Hyperledger Besu团队通过以下方式提升了测试稳定性:
-
合理设置超时和等待时间,考虑网络延迟因素。
-
采用更健壮的断言条件,避免因时序问题导致的误报。
-
持续监控测试稳定性,及时发现和修复新出现的flake问题。
这个案例展示了在区块链系统开发中,如何通过系统化的方法解决测试稳定性问题,同时也体现了开源社区通过协作解决问题的典型过程。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00