SpiceAI云连接器TPCH吞吐量测试报告
2025-07-02 12:51:31作者:羿妍玫Ivan
SpiceAI项目团队近日完成了云连接器(Cloud Connector)针对TPCH基准测试的吞吐量性能验证。测试结果显示,在SF1(Scale Factor 1)数据规模下,系统表现出优异的查询响应能力和吞吐量水平。
测试环境与配置
本次测试采用了SpiceAI v1.4.0版本的云连接器组件,目标环境为开发环境的Spice云应用,该应用已预先配置了TPCH标准测试数据集。测试过程中监控了内存使用情况,峰值内存消耗仅为0.16GB,显示出良好的资源利用效率。
测试方法与指标
测试采用了TPCH标准查询集,包含22个复杂分析查询(Q1-Q22)和7个简化查询(simple_q1-simple_q7)。每个查询执行20次迭代,记录最小、最大、中位数及不同百分位(90%、95%、99%)的响应时间。
关键性能指标包括:
- 查询响应时间(毫秒级)
- 系统吞吐量(查询/秒)
- 内存资源消耗
性能测试结果
测试数据显示,所有TPCH查询均成功完成,系统整体吞吐量达到229,661次查询/秒的优异水平。具体查询性能表现如下:
-
复杂查询(Q1-Q22):
- 中位数响应时间集中在1-5毫秒区间
- Q16表现相对耗时,中位数为5毫秒
- Q21在多次迭代中保持稳定的2毫秒响应
-
简化查询(simple_q1-simple_q7):
- 绝大多数查询响应时间为1毫秒
- simple_q2较为特殊,中位数响应时间为15毫秒
-
资源利用率:
- 内存使用稳定在0.16GB
- 无内存波动或泄漏迹象
技术分析与优化建议
从测试结果可以看出,SpiceAI云连接器在处理TPCH工作负载时展现出几个显著优势:
- 极低延迟:毫秒级的响应时间表明查询优化器和执行引擎的高效性
- 高稳定性:多次迭代测试中响应时间波动小,系统行为可预测
- 资源高效:低内存占用适合云原生部署环境
对于潜在的性能优化方向,建议关注:
- Q16和simple_q2等相对耗时查询的执行计划分析
- 并发查询场景下的资源分配策略
- 更大数据规模(SF10+)下的性能表现验证
结论
本次TPCH吞吐量测试充分验证了SpiceAI云连接器在处理分析型工作负载时的卓越性能。测试结果不仅证明了系统当前版本的成熟度,也为后续性能优化和功能增强提供了可靠基准。这种低延迟、高吞吐的特性使SpiceAI云连接器特别适合实时数据分析场景的应用部署。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
411
3.16 K
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
676
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
323
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
265
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868