在ktransformers项目中支持Volta和Turing架构显卡的技术方案
2025-05-16 19:04:42作者:曹令琨Iris
背景介绍
ktransformers是一个专注于高效推理的开源项目,它通过创新的算子优化和内存管理技术,显著提升了大型语言模型的推理效率。然而,由于硬件架构的限制,Volta(如T4)和Turing(如2080Ti)架构的显卡无法直接运行项目中默认的Marlin算子,这给使用这些显卡的用户带来了挑战。
问题分析
Volta和Turing架构显卡面临的主要问题包括:
- 不支持Marlin算子,导致显存需求翻倍
- 默认使用flash-attention 2,但这些架构缺乏必要的硬件支持
- 单卡显存不足时无法有效运行大模型
解决方案
1. 基础修改方案
首先需要对项目代码进行以下基础修改:
- 将所有YAML配置文件中的KLinearMarlin替换为KLinearTorch
- 从源码重新编译ktransformers项目
- 安装flash-attn(虽然不会实际使用,但可以避免报错)
- 修改local_chat.py文件,将所有flash_attention_2替换为eager
2. 注意力机制优化
针对注意力计算部分,有两种优化方案:
方案一:强制使用Windows路径 修改attention.py文件,将Linux路径下的forward_linux调用改为forward_windows调用。这种方法虽然可行,但性能较低。
方案二:使用scaled_dot_product_attention 更优的方案是修改flash_attn_func调用,替换为PyTorch原生的scaled_dot_product_attention。具体修改包括:
- 添加数据类型转换逻辑,将中间计算转换为半精度
- 使用transpose调整张量维度
- 设置合适的scale和is_causal参数
这种方案相比强制使用Windows路径可以获得1.5-2倍的性能提升。
3. 显存管理
对于显存不足的情况,建议:
- 使用多卡并行(如4张T4或2张2080Ti)
- 监控内存占用,确保单路CPU内存大于模型完整大小
- 设置PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True避免显存碎片
性能优化技巧
- 对于Triton报错"out of resource: shared memory",可以修改triton_attention.py中的num_stages为1
- 使用Q2KL量化版本可以显著降低显存需求
- 监控token生成速率,合理调整batch size
实际效果
经过上述修改后,多种配置已成功运行:
- 4张T4显卡运行Q2KL版本,回答质量良好
- 双路2080Ti(各17GB显存)稳定运行
- V100+CUDA 11.8环境验证通过
生成速度方面,优化后的方案可以达到1.5-3.5 tokens/s,具体取决于硬件配置和模型量化程度。
总结
通过本文介绍的技术方案,成功解决了ktransformers项目在Volta和Turing架构显卡上的兼容性问题。这些修改不仅使老款显卡能够运行最新的大语言模型,还通过多种优化手段提升了推理效率。对于资源受限的环境,合理选择量化版本和多卡配置是关键。未来随着项目的更新,可能会有更优雅的解决方案出现,但当前方案已经为使用这些显卡的研究者和开发者提供了可行的技术路径。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
376
3.26 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
262
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
77