OpenTelemetry Java SDK中ConfigUtil的ConcurrentModificationException问题解析
在OpenTelemetry Java SDK 1.42.1版本中,开发者报告了一个关于ConfigUtil工具类的并发修改异常问题。这个问题主要出现在Android环境下,当系统属性被并发修改时,会导致LongGaugeBuilder构建过程中抛出ConcurrentModificationException异常。
问题背景
OpenTelemetry的指标构建器在初始化时会通过ConfigUtil读取系统属性配置。DebugConfig类在静态初始化块中调用ConfigUtil.getString()方法,而该方法底层使用了System.getProperties()来获取系统属性。由于Properties类本身不是线程安全的,当系统属性被其他线程修改时,就会导致迭代过程中出现并发修改异常。
技术分析
从异常堆栈可以清晰地看到问题发生的路径:
- LongGaugeBuilder.build()触发InstrumentDescriptor创建
- 需要获取SourceInfo用于调试
- DebugConfig类初始化时读取系统属性
- ConfigUtil.getString()使用Properties的流式操作导致异常
Properties类继承自Hashtable,虽然Hashtable本身是线程安全的,但其迭代器Enumerator并不是快速失败的(fail-fast)。然而在多线程环境下,如果在迭代过程中有其他线程修改了哈希表,仍然可能导致ConcurrentModificationException。
解决方案探讨
开发团队讨论了多种可能的解决方案:
-
使用防御性拷贝:通过new HashMap<>(System.getProperties())创建属性副本,但这种方式在拷贝过程中仍可能遇到并发问题。
-
捕获异常处理:在迭代代码周围添加try-catch块捕获异常,但这只是治标不治本的方法。
-
使用keys()枚举:Properties/Hashtable的keys()方法返回的枚举器不是快速失败的,理论上可以避免并发修改异常,但需要进一步测试验证。
-
完全拷贝属性集合:使用System.getProperties().entrySet().stream().toArray()或Set.copyOf()创建不可变副本,这能确保迭代安全,但无法感知后续的属性变化。
最佳实践建议
对于这类系统属性读取的场景,建议采用以下方案:
- 在首次读取时创建属性的不可变快照,后续操作基于这个快照进行
- 如果需要实时获取最新属性值,可以使用同步块保护读取过程
- 考虑使用ConcurrentHashMap作为属性缓存,但要注意内存开销
对于OpenTelemetry这类观测性工具来说,系统属性的读取通常只需要在初始化阶段进行一次,因此采用防御性拷贝是最稳妥的方案。即使后续系统属性发生变化,也不会影响已经初始化的配置。
总结
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









