GraphScope项目中的编译器Fat-Jar构建优化实践
在分布式图计算系统GraphScope的开发过程中,编译器模块承担着将高级查询语言转换为物理执行计划的重要职责。近期项目组针对编译器模块进行了一项重要优化——通过Maven Profile机制构建包含所有依赖的Fat-Jar(胖jar包),这一改进显著提升了编译器在交互式场景中的使用体验。
传统Java项目中,模块依赖通常以多个独立jar包的形式存在,这在开发环境部署时容易引发依赖冲突或缺失问题。GraphScope编译器模块原先也存在类似痛点,特别是在需要独立调用编译器生成物理执行计划的场景下,用户需要手动处理复杂的依赖关系链。
项目组通过引入Maven的Profile配置,创新性地实现了以下技术方案:
-
Fat-Jar构建机制:在compiler模块的pom.xml中新增专门的profile配置,该配置会触发maven-assembly-plugin插件将所有运行时依赖打包进单个可执行jar中。这种自包含的打包方式消除了类路径问题,使得编译器可以独立运行。
-
构建灵活性:通过profile的激活机制,开发者可以自由选择构建普通jar还是fat-jar。在持续集成环境中可以保持原有轻量级构建,而在需要部署使用的场景则可通过
-P参数激活fat-jar构建。 -
使用便捷性:生成的fat-jar可以直接通过java -jar命令执行,简化了物理计划生成的调用流程。这对于需要嵌入编译器功能的上下游系统尤其有价值,减少了环境配置的复杂度。
这项优化体现了GraphScope项目对开发者体验的持续改进。Fat-Jar的构建方式虽然增加了最终产物的体积,但换来了部署的简便性和运行时的可靠性,这种权衡在需要独立分发工具组件的场景中尤为合适。
从技术实现角度看,该方案还预留了扩展空间。未来可以通过细化依赖范围(如provided/compile/runtime)进一步优化jar包大小,或者结合Maven的shade插件处理依赖冲突问题。这种架构设计展现了GraphScope项目在工程实践上的成熟思考。
对于使用GraphScope进行图计算开发的团队,这项改进意味着更简单的编译器集成方式和更稳定的运行时环境,有助于提升整体开发效率。这也为其他分布式系统项目的模块化设计提供了有价值的参考实践。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00