Longhorn存储系统在电源故障后的稳定性问题分析与修复
问题背景
在分布式存储系统Longhorn v1.7.2版本中,用户报告了一个严重的稳定性问题:集群在经历电源故障恢复后,Longhorn组件出现内存泄漏,导致Pod频繁被OOM Killer终止,节点负载急剧升高甚至变为Not Ready状态。这一问题尤其影响使用备份功能的用户环境。
问题现象
受影响的环境表现出以下典型症状:
- Longhorn-manager Pod内存使用量异常增长,最终达到7GB以上
- 节点负载平均值飙升到150以上
- 大量备份任务(Backup)处于Pending状态(报告中多达4422个)
- 系统日志中出现大量OOM Killer终止进程的记录
根本原因分析
经过深入的技术调查,发现问题由多个因素共同导致:
-
GRPC连接泄漏:BackupController.checkMonitor()函数在创建EngineClientProxy后,在某些错误路径上未能正确关闭连接,导致GRPC客户端资源持续累积。
-
内存分配效率问题:BackupController.reconcile()中频繁调用DeepCopy操作,对VolumeAttachment和Engine CRs进行不必要的数据拷贝,虽然这些内存最终会被GC回收,但在高频率调用下加剧了内存压力。
-
备份状态管理缺陷:当快照(snapshot)丢失时,备份任务会永久停留在Pending状态,持续消耗系统资源尝试恢复。
技术细节
在内存分析中,使用Go的pprof工具发现了以下关键证据:
-
内存占用主要来自:
- bufio.NewReaderSize (31.46%)
- grpc/internal/transport.newBufWriter (30.11%)
-
存在数千个goroutine在grpcsync.(*CallbackSerializer).run()中阻塞等待
-
堆分析显示GRPC相关的内存对象持续增长而未被释放
解决方案
开发团队针对这些问题实施了以下修复措施:
-
修复GRPC连接泄漏:确保在所有错误路径上正确关闭EngineClientProxy,包括:
- 快照获取失败时
- 备份监控启动失败时
- 其他异常情况下
-
优化内存使用:将部分DeepCopy操作替换为只读访问,特别是对于Engine CRs的查询操作。
-
改进备份状态管理:更合理地处理快照丢失的情况,避免创建无法完成的备份任务。
用户建议
对于遇到类似问题的用户,可以采取以下临时措施:
- 清理处于Pending状态的备份任务,减轻系统负担
- 暂停非必要的定期备份任务,直到系统稳定
- 考虑创建完整备份(full backup)作为保护措施
版本修复情况
该修复已包含在Longhorn v1.8.0版本中,并计划向后移植到v1.7.3版本。对于急于解决问题的用户,社区提供了测试版本镜像供验证使用。
经验总结
这一案例展示了分布式存储系统在异常恢复场景下面临的挑战,特别是:
- 资源泄漏在长时间运行系统中的累积效应
- 错误处理路径上的资源释放重要性
- 大规模备份任务管理的复杂性
通过这次问题的分析和解决,Longhorn在异常恢复能力和资源管理方面得到了显著提升。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









