Longhorn存储系统在电源故障后的稳定性问题分析与修复
问题背景
在分布式存储系统Longhorn v1.7.2版本中,用户报告了一个严重的稳定性问题:集群在经历电源故障恢复后,Longhorn组件出现内存泄漏,导致Pod频繁被OOM Killer终止,节点负载急剧升高甚至变为Not Ready状态。这一问题尤其影响使用备份功能的用户环境。
问题现象
受影响的环境表现出以下典型症状:
- Longhorn-manager Pod内存使用量异常增长,最终达到7GB以上
- 节点负载平均值飙升到150以上
- 大量备份任务(Backup)处于Pending状态(报告中多达4422个)
- 系统日志中出现大量OOM Killer终止进程的记录
根本原因分析
经过深入的技术调查,发现问题由多个因素共同导致:
-
GRPC连接泄漏:BackupController.checkMonitor()函数在创建EngineClientProxy后,在某些错误路径上未能正确关闭连接,导致GRPC客户端资源持续累积。
-
内存分配效率问题:BackupController.reconcile()中频繁调用DeepCopy操作,对VolumeAttachment和Engine CRs进行不必要的数据拷贝,虽然这些内存最终会被GC回收,但在高频率调用下加剧了内存压力。
-
备份状态管理缺陷:当快照(snapshot)丢失时,备份任务会永久停留在Pending状态,持续消耗系统资源尝试恢复。
技术细节
在内存分析中,使用Go的pprof工具发现了以下关键证据:
-
内存占用主要来自:
- bufio.NewReaderSize (31.46%)
- grpc/internal/transport.newBufWriter (30.11%)
-
存在数千个goroutine在grpcsync.(*CallbackSerializer).run()中阻塞等待
-
堆分析显示GRPC相关的内存对象持续增长而未被释放
解决方案
开发团队针对这些问题实施了以下修复措施:
-
修复GRPC连接泄漏:确保在所有错误路径上正确关闭EngineClientProxy,包括:
- 快照获取失败时
- 备份监控启动失败时
- 其他异常情况下
-
优化内存使用:将部分DeepCopy操作替换为只读访问,特别是对于Engine CRs的查询操作。
-
改进备份状态管理:更合理地处理快照丢失的情况,避免创建无法完成的备份任务。
用户建议
对于遇到类似问题的用户,可以采取以下临时措施:
- 清理处于Pending状态的备份任务,减轻系统负担
- 暂停非必要的定期备份任务,直到系统稳定
- 考虑创建完整备份(full backup)作为保护措施
版本修复情况
该修复已包含在Longhorn v1.8.0版本中,并计划向后移植到v1.7.3版本。对于急于解决问题的用户,社区提供了测试版本镜像供验证使用。
经验总结
这一案例展示了分布式存储系统在异常恢复场景下面临的挑战,特别是:
- 资源泄漏在长时间运行系统中的累积效应
- 错误处理路径上的资源释放重要性
- 大规模备份任务管理的复杂性
通过这次问题的分析和解决,Longhorn在异常恢复能力和资源管理方面得到了显著提升。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00