.NET Extensions 项目中 AI 评估模块的改进:评估指标理由字段的引入
在软件开发过程中,对人工智能(AI)模型输出结果的评估是一个关键环节。.NET Extensions 项目中的 AI 评估模块最近进行了一项重要改进,旨在提升评估结果的可解释性和用户体验。
背景与问题
在之前的实现中,评估模块主要通过 RelevanceTruthAndCompletenessEvaluator 类来生成评估分数及其理由。这些理由信息被存储为 EvaluationDiagnostic 类型,并标记为 Informational 严重级别。然而,这种设计存在几个局限性:
- 理由信息与其他诊断信息混在一起,难以区分
- 自定义评估器需要创建特殊的数据结构来处理理由信息
- 评估报告无法突出显示这些重要的解释性内容
解决方案
项目团队实施了以下改进措施:
-
新增理由字段:在
EvaluationMetric类中增加了一个可选的字符串属性,专门用于存储评估理由或解释。 -
简化评估器逻辑:移除了
RelevanceTruthAndCompletenessEvaluator中的includeReasoning选项,改为无条件生成理由信息。这不仅简化了API,还可能提高评分质量,因为要求模型提供理由会促使其进行更深入的"思考"。 -
改进报告展示:更新了评估报告生成逻辑,现在可以专门显示理由信息。初步实现是在悬停评估指标卡片时显示理由,未来计划增加点击查看详细信息的功能。
技术意义
这项改进带来了几个重要的技术优势:
-
更好的关注点分离:将评估理由从一般诊断信息中分离出来,使数据结构更加清晰。
-
增强的可解释性:用户现在可以更容易地理解为什么某个评估指标会得到特定分数,这对调试和改进AI模型非常有帮助。
-
更友好的用户界面:评估报告能够以更直观的方式展示关键信息,提升用户体验。
实现细节
在实现层面,这项改进涉及:
- 修改
EvaluationMetric类的定义 - 重构
RelevanceTruthAndCompletenessEvaluator类的评分逻辑 - 更新报告生成器以支持新的理由显示方式
未来方向
基于当前改进,项目团队计划进一步:
- 完善评估报告界面,允许用户点击指标卡片查看完整详情
- 探索更多评估指标的可解释性功能
- 优化理由生成的算法,提高其准确性和实用性
这项改进体现了 .NET Extensions 项目对AI评估功能持续优化的承诺,也为开发者提供了更强大的工具来理解和改进他们的AI应用。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00