DeepSearcher项目中的FireCrawl全站爬取功能解析
在开源项目DeepSearcher中,FireCrawl作为一个重要的网页爬取组件,最初仅支持单页面的抓取功能。本文将从技术角度分析这一设计决策的背景,以及后续如何扩展为支持全站爬取的功能演进过程。
初始设计:单页面抓取的考量
DeepSearcher最初仅实现了FireCrawl的单页面抓取功能,这一设计主要基于以下几个技术考量:
-
效率优先:对于大多数用户场景,如只需要获取某个教程或文档页面的内容时,单页抓取能够更快地返回结果,减少不必要的网络请求和数据处理开销。
-
资源消耗:全站爬取会显著增加服务器负载和网络带宽消耗,对于不需要全站数据的场景,单页抓取是更经济的解决方案。
-
API限制:某些网站的robots.txt协议或API使用条款可能限制大规模爬取,单页抓取更符合合规要求。
功能演进:全站爬取的需求
随着项目应用场景的扩展,用户提出了全站爬取的需求。开发团队对此进行了深入分析:
-
技术可行性:FireCrawl本身提供了crawl_url方法,支持从种子URL开始递归抓取整个网站。
-
参数控制:实现时需要提供可配置参数,如maxDepth(最大爬取深度)和pageLimit(页面数量限制),让用户能够根据实际需求控制爬取范围。
-
性能优化:全站爬取需要考虑去重策略、请求间隔、错误处理等机制,确保爬取过程的稳定性和效率。
实现方案
最终的实现方案在保持原有单页抓取功能的同时,新增了全站爬取能力:
-
接口设计:新增一个专门处理全站爬取的方法,与原有单页抓取方法区分,保持接口清晰。
-
参数配置:提供maxDepth、pageLimit等可配置参数,默认值设置考虑了大多数使用场景。
-
结果处理:对爬取结果进行统一格式化处理,与系统其他模块保持兼容。
使用建议
对于DeepSearcher用户,在选择使用单页抓取还是全站爬取时,可参考以下建议:
-
明确需求:如果只需要特定页面的信息,优先使用单页抓取;如需建立网站知识库,则选择全站爬取。
-
参数调优:全站爬取时,根据网站规模和服务器性能合理设置maxDepth和pageLimit。
-
合规使用:遵守目标网站的爬取政策,必要时设置合理的请求间隔。
这一功能演进体现了DeepSearcher项目对用户需求的快速响应能力,也为开发者提供了更灵活的网页内容获取方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00