首页
/ SwinTrack 使用指南

SwinTrack 使用指南

2024-09-28 18:03:33作者:裴锟轩Denise

项目概述

SwinTrack 是一个基于 Transformer 的目标跟踪框架,它在 NeurIPS 2022 上被接受并发表。本框架旨在展现 Transformer 在视觉追踪领域的强大能力,提供了一个简单而有效的基准方案。项目源码托管于 GitHub,采用 MIT 许可证发布。

目录结构及介绍

SwinTrack 的项目结构组织清晰,便于开发者理解和定制:

SwinTrack/
├── config             # 配置文件夹,包含了模型训练和评估的各类配置。
│   ├── SwinTrack       # SwinTrack相关配置子文件夹,包括不同模型变种的配置。
│       ├── mixin      # 配置补丁,如ResNet backbone的配置。
├── core               # 核心算法实现,如跟踪逻辑等。
├── criterion          # 损失函数相关的实现。
├── data               # 数据处理模块,包括数据集加载器。
│   ├── datasets       # 具体的数据集定义和加载逻辑。
├── miscellanies       # 杂项,可能包含一些工具函数或辅助脚本。
├── models             # 模型架构定义,主要为SwinTrack模型结构。
├── runners            # 运行器,包含训练和评估的主流程逻辑。
├── conda_init.sh      # Conda环境初始化脚本。
├── LICENSE            # 许可证文件。
├── README.md          # 项目说明文档。
├── requirements.txt   # 环境依赖列表。
├── run.sh             # 命令行运行脚本,简化训练和评估过程。
└── ...

项目的启动文件介绍

主要启动脚本:main.py

  • 功能:此脚本是程序的主要执行入口,允许用户通过命令行参数指定不同的运行模式(训练、评估)以及模型配置。
  • 使用示例
    • 单GPU训练:python main.py SwinTrack Tiny --output_dir /your/output/path
    • 多GPU训练:python main.py SwinTrack Tiny --distributed_nproc_per_node $num_gpus --output_dir /your/output/path

辅助脚本:run.sh

  • 功能:提供了更简便的方式来调用 main.py,自动识别环境变量来执行多节点或多GPU的任务。
  • 使用示例
    • 全局可用GPU训练:./run.sh SwinTrack Tiny --output_dir /your/output/path -W $num_dataloader_workers
    • 分布式跨节点训练:设置环境变量后,./run.sh SwinTrack Tiny --output_dir /your/output/path --num_workers $num_dataloader_workers

项目的配置文件介绍

配置文件位于 config 文件夹中,特别是在 config/SwinTrack 子目录下,这些文件定义了模型的架构、训练和评估的具体设置。

  • 配置结构

    • 基础配置:提供了模型的基础超参数,如学习率、优化器选择等。
    • 模型变体:比如 Tiny, Base, 及其对应的 -384 版本,每个变体有专门的配置。
    • 混合配置(mixin): 如 resnet.yaml, got10k.yaml 提供了额外的配置选项,允许用户进行模型 backbone 的更换或适应特定数据集的训练。
  • 如何自定义

    • 用户可以通过修改这些配置文件或在命令行通过 --mixin_config 参数加入补丁配置来调整模型训练细节。
    • 例如,添加ResNet作为backbone:python main.py SwinTrack Tiny --mixin_config resnet.yaml.
  • 环境配置:项目还推荐使用 conda_init.sh 脚本来快速搭建开发环境。

通过遵循上述指导,开发者可以轻松地配置、训练和评估属于自己的SwinTrack模型,利用Transformer的强大性能来进行高效的目标跟踪任务。

登录后查看全文
热门项目推荐

热门内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K
kernelkernel
deepin linux kernel
C
22
6
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
423
392
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
511