SwinTrack 使用指南
2024-09-28 22:10:12作者:裴锟轩Denise
项目概述
SwinTrack 是一个基于 Transformer 的目标跟踪框架,它在 NeurIPS 2022 上被接受并发表。本框架旨在展现 Transformer 在视觉追踪领域的强大能力,提供了一个简单而有效的基准方案。项目源码托管于 GitHub,采用 MIT 许可证发布。
目录结构及介绍
SwinTrack 的项目结构组织清晰,便于开发者理解和定制:
SwinTrack/
├── config # 配置文件夹,包含了模型训练和评估的各类配置。
│ ├── SwinTrack # SwinTrack相关配置子文件夹,包括不同模型变种的配置。
│ ├── mixin # 配置补丁,如ResNet backbone的配置。
├── core # 核心算法实现,如跟踪逻辑等。
├── criterion # 损失函数相关的实现。
├── data # 数据处理模块,包括数据集加载器。
│ ├── datasets # 具体的数据集定义和加载逻辑。
├── miscellanies # 杂项,可能包含一些工具函数或辅助脚本。
├── models # 模型架构定义,主要为SwinTrack模型结构。
├── runners # 运行器,包含训练和评估的主流程逻辑。
├── conda_init.sh # Conda环境初始化脚本。
├── LICENSE # 许可证文件。
├── README.md # 项目说明文档。
├── requirements.txt # 环境依赖列表。
├── run.sh # 命令行运行脚本,简化训练和评估过程。
└── ...
项目的启动文件介绍
主要启动脚本:main.py
- 功能:此脚本是程序的主要执行入口,允许用户通过命令行参数指定不同的运行模式(训练、评估)以及模型配置。
- 使用示例:
- 单GPU训练:
python main.py SwinTrack Tiny --output_dir /your/output/path
- 多GPU训练:
python main.py SwinTrack Tiny --distributed_nproc_per_node $num_gpus --output_dir /your/output/path
- 单GPU训练:
辅助脚本:run.sh
- 功能:提供了更简便的方式来调用
main.py
,自动识别环境变量来执行多节点或多GPU的任务。 - 使用示例:
- 全局可用GPU训练:
./run.sh SwinTrack Tiny --output_dir /your/output/path -W $num_dataloader_workers
- 分布式跨节点训练:设置环境变量后,
./run.sh SwinTrack Tiny --output_dir /your/output/path --num_workers $num_dataloader_workers
- 全局可用GPU训练:
项目的配置文件介绍
配置文件位于 config
文件夹中,特别是在 config/SwinTrack
子目录下,这些文件定义了模型的架构、训练和评估的具体设置。
-
配置结构:
- 基础配置:提供了模型的基础超参数,如学习率、优化器选择等。
- 模型变体:比如
Tiny
,Base
, 及其对应的-384
版本,每个变体有专门的配置。 - 混合配置(mixin): 如
resnet.yaml
,got10k.yaml
提供了额外的配置选项,允许用户进行模型 backbone 的更换或适应特定数据集的训练。
-
如何自定义:
- 用户可以通过修改这些配置文件或在命令行通过
--mixin_config
参数加入补丁配置来调整模型训练细节。 - 例如,添加ResNet作为backbone:
python main.py SwinTrack Tiny --mixin_config resnet.yaml
.
- 用户可以通过修改这些配置文件或在命令行通过
-
环境配置:项目还推荐使用
conda_init.sh
脚本来快速搭建开发环境。
通过遵循上述指导,开发者可以轻松地配置、训练和评估属于自己的SwinTrack模型,利用Transformer的强大性能来进行高效的目标跟踪任务。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
207
2.19 K

暂无简介
Dart
516
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193