基于Kotlin与Spring AI构建智能文档问答系统实践指南
2025-06-09 00:23:11作者:宣聪麟
前言
在现代应用开发中,将人工智能能力集成到系统中已成为提升用户体验的重要手段。本文将详细介绍如何使用Kotlin语言结合Spring AI框架,构建一个基于检索增强生成(RAG)技术的智能文档问答系统。该系统能够自动理解用户问题,并从Kotlin标准库文档中检索相关信息,生成专业准确的回答。
技术栈概述
本项目采用以下核心技术组件:
- Spring Boot 3.4.3:现代Java/Kotlin应用框架
- Kotlin 1.9.21:JetBrains开发的现代化编程语言
- Spring AI:Spring生态的AI集成框架
- Qdrant:高性能向量数据库
- OpenAI GPT:大型语言模型服务
环境准备
1. 获取OpenAI API密钥
访问OpenAI平台创建API密钥,这是访问GPT模型服务的凭证。创建后设置环境变量:
# macOS/Linux
export OPENAI_API_KEY="your_api_key_here"
# Windows
setx OPENAI_API_KEY "your_api_key_here"
注意:OpenAI API是付费服务,使用前请了解其定价策略。Spring AI也支持其他LLM提供商,可根据需要切换。
2. 部署Qdrant向量数据库
使用Docker快速启动Qdrant服务:
docker run -p 6333:6333 -p 6334:6334 qdrant/qdrant
- 端口6333:Qdrant管理界面
- 端口6334:应用交互端口
项目初始化
1. 创建Spring Boot项目
使用Gradle构建工具创建项目,主要依赖包括:
spring-boot-starter-webspring-ai-starter-model-openaispring-ai-starter-vector-store-qdrant
build.gradle.kts关键配置示例:
plugins {
kotlin("jvm") version "2.1.21"
id("org.springframework.boot") version "3.5.0"
}
dependencies {
implementation("org.springframework.boot:spring-boot-starter-web")
implementation("org.springframework.ai:spring-ai-starter-model-openai")
implementation("org.springframework.ai:spring-ai-starter-vector-store-qdrant")
implementation("org.springframework.ai:spring-ai-advisors-vector-store")
}
2. 应用配置
application.properties关键配置:
# OpenAI配置
spring.ai.openai.api-key=${OPENAI_API_KEY}
spring.ai.openai.chat.options.model=gpt-4
# Qdrant配置
spring.ai.vectorstore.qdrant.host=localhost
spring.ai.vectorstore.qdrant.port=6334
spring.ai.vectorstore.qdrant.collection-name=kotlinDocs
核心功能实现
1. 文档加载模块
创建REST控制器加载Kotlin标准库文档:
@RestController
@RequestMapping("/kotlin")
class KotlinSTDController(
private val restTemplate: RestTemplate,
private val vectorStore: VectorStore
) {
@PostMapping("/load-docs")
fun load() {
val topics = listOf("collections-overview", "constructing-collections", /*...*/)
topics.forEach { topic ->
val content = restTemplate.getForObject("$BASE_URL$topic.md", String::class.java)
content?.let {
val doc = Document.builder()
.id(UUID.randomUUID().toString())
.text(it)
.metadata("topic", topic)
.build()
vectorStore.add(listOf(doc))
}
}
}
}
2. 文档检索功能
实现相似度搜索接口:
@GetMapping("/docs")
fun query(
@RequestParam query: String,
@RequestParam topK: Int = 2
): List<Document>? {
return vectorStore.similaritySearch(
SearchRequest.builder()
.query(query)
.topK(topK)
.build()
)
}
3. RAG问答系统
集成检索增强生成技术:
@PostMapping("/chat/ask")
fun chatAsk(@RequestBody request: ChatRequest): String? {
val promptTemplate = PromptTemplate("""
{query}.
请基于"Kotlin标准库"文档提供简洁回答。
""".trimIndent())
val retrievalAdvisor = QuestionAnswerAdvisor.builder(vectorStore)
.searchRequest(SearchRequest.builder()
.similarityThreshold(0.7)
.topK(request.topK)
.build())
.build()
return chatClient.prompt(promptTemplate.create(mapOf("query" to request.query)))
.advisors(retrievalAdvisor)
.call()
.content()
}
系统测试
1. 加载文档
curl -X POST http://localhost:8080/kotlin/load-docs
2. 执行查询
curl -X GET "http://localhost:8080/kotlin/docs?query=collection operations"
3. 智能问答
curl -X POST "http://localhost:8080/kotlin/chat/ask" \
-H "Content-Type: application/json" \
-d '{"query": "Kotlin中序列(Sequence)与集合(Collection)的主要性能区别是什么?"}'
预期获得基于文档的专业回答,解释两种数据结构在不同场景下的性能特点。
技术深度解析
向量数据库工作原理
Qdrant将文档通过嵌入模型(如text-embedding-ada-002)转换为高维向量(通常1536维)。查询时:
- 用户问题被转换为向量
- 计算与文档向量的余弦相似度
- 返回相似度最高的文档
RAG技术优势
相比直接询问LLM,RAG具有:
- 事实准确性:答案基于真实文档
- 领域专业性:专注特定领域知识
- 可追溯性:可展示参考文档
- 低成本:减少LLM幻觉产生
性能优化建议
- 文档分块:将大文档拆分为适当大小的段落
- 元数据过滤:添加文档类型、章节等元数据
- 混合搜索:结合关键词与向量搜索
- 缓存机制:缓存常见查询结果
扩展应用场景
本技术方案可应用于:
- 企业内部知识库问答系统
- 产品文档智能助手
- 教育领域的学习辅导系统
- 技术支持自动化应答
总结
本文详细介绍了使用Kotlin和Spring AI构建智能文档问答系统的全过程。通过结合向量数据库与大型语言模型,我们实现了能够理解专业问题并从官方文档中提取准确信息的智能系统。这种架构既保持了生成式AI的灵活性,又确保了回答的专业性和准确性,是构建企业级AI应用的理想选择。
读者可以根据实际需求,扩展文档来源、优化检索策略或集成更多AI能力,打造更强大的智能应用系统。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.89 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
261
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
654
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1