基于Kotlin与Spring AI构建智能文档问答系统实践指南
2025-06-09 18:51:00作者:宣聪麟
前言
在现代应用开发中,将人工智能能力集成到系统中已成为提升用户体验的重要手段。本文将详细介绍如何使用Kotlin语言结合Spring AI框架,构建一个基于检索增强生成(RAG)技术的智能文档问答系统。该系统能够自动理解用户问题,并从Kotlin标准库文档中检索相关信息,生成专业准确的回答。
技术栈概述
本项目采用以下核心技术组件:
- Spring Boot 3.4.3:现代Java/Kotlin应用框架
- Kotlin 1.9.21:JetBrains开发的现代化编程语言
- Spring AI:Spring生态的AI集成框架
- Qdrant:高性能向量数据库
- OpenAI GPT:大型语言模型服务
环境准备
1. 获取OpenAI API密钥
访问OpenAI平台创建API密钥,这是访问GPT模型服务的凭证。创建后设置环境变量:
# macOS/Linux
export OPENAI_API_KEY="your_api_key_here"
# Windows
setx OPENAI_API_KEY "your_api_key_here"
注意:OpenAI API是付费服务,使用前请了解其定价策略。Spring AI也支持其他LLM提供商,可根据需要切换。
2. 部署Qdrant向量数据库
使用Docker快速启动Qdrant服务:
docker run -p 6333:6333 -p 6334:6334 qdrant/qdrant
- 端口6333:Qdrant管理界面
- 端口6334:应用交互端口
项目初始化
1. 创建Spring Boot项目
使用Gradle构建工具创建项目,主要依赖包括:
spring-boot-starter-webspring-ai-starter-model-openaispring-ai-starter-vector-store-qdrant
build.gradle.kts关键配置示例:
plugins {
kotlin("jvm") version "2.1.21"
id("org.springframework.boot") version "3.5.0"
}
dependencies {
implementation("org.springframework.boot:spring-boot-starter-web")
implementation("org.springframework.ai:spring-ai-starter-model-openai")
implementation("org.springframework.ai:spring-ai-starter-vector-store-qdrant")
implementation("org.springframework.ai:spring-ai-advisors-vector-store")
}
2. 应用配置
application.properties关键配置:
# OpenAI配置
spring.ai.openai.api-key=${OPENAI_API_KEY}
spring.ai.openai.chat.options.model=gpt-4
# Qdrant配置
spring.ai.vectorstore.qdrant.host=localhost
spring.ai.vectorstore.qdrant.port=6334
spring.ai.vectorstore.qdrant.collection-name=kotlinDocs
核心功能实现
1. 文档加载模块
创建REST控制器加载Kotlin标准库文档:
@RestController
@RequestMapping("/kotlin")
class KotlinSTDController(
private val restTemplate: RestTemplate,
private val vectorStore: VectorStore
) {
@PostMapping("/load-docs")
fun load() {
val topics = listOf("collections-overview", "constructing-collections", /*...*/)
topics.forEach { topic ->
val content = restTemplate.getForObject("$BASE_URL$topic.md", String::class.java)
content?.let {
val doc = Document.builder()
.id(UUID.randomUUID().toString())
.text(it)
.metadata("topic", topic)
.build()
vectorStore.add(listOf(doc))
}
}
}
}
2. 文档检索功能
实现相似度搜索接口:
@GetMapping("/docs")
fun query(
@RequestParam query: String,
@RequestParam topK: Int = 2
): List<Document>? {
return vectorStore.similaritySearch(
SearchRequest.builder()
.query(query)
.topK(topK)
.build()
)
}
3. RAG问答系统
集成检索增强生成技术:
@PostMapping("/chat/ask")
fun chatAsk(@RequestBody request: ChatRequest): String? {
val promptTemplate = PromptTemplate("""
{query}.
请基于"Kotlin标准库"文档提供简洁回答。
""".trimIndent())
val retrievalAdvisor = QuestionAnswerAdvisor.builder(vectorStore)
.searchRequest(SearchRequest.builder()
.similarityThreshold(0.7)
.topK(request.topK)
.build())
.build()
return chatClient.prompt(promptTemplate.create(mapOf("query" to request.query)))
.advisors(retrievalAdvisor)
.call()
.content()
}
系统测试
1. 加载文档
curl -X POST http://localhost:8080/kotlin/load-docs
2. 执行查询
curl -X GET "http://localhost:8080/kotlin/docs?query=collection operations"
3. 智能问答
curl -X POST "http://localhost:8080/kotlin/chat/ask" \
-H "Content-Type: application/json" \
-d '{"query": "Kotlin中序列(Sequence)与集合(Collection)的主要性能区别是什么?"}'
预期获得基于文档的专业回答,解释两种数据结构在不同场景下的性能特点。
技术深度解析
向量数据库工作原理
Qdrant将文档通过嵌入模型(如text-embedding-ada-002)转换为高维向量(通常1536维)。查询时:
- 用户问题被转换为向量
- 计算与文档向量的余弦相似度
- 返回相似度最高的文档
RAG技术优势
相比直接询问LLM,RAG具有:
- 事实准确性:答案基于真实文档
- 领域专业性:专注特定领域知识
- 可追溯性:可展示参考文档
- 低成本:减少LLM幻觉产生
性能优化建议
- 文档分块:将大文档拆分为适当大小的段落
- 元数据过滤:添加文档类型、章节等元数据
- 混合搜索:结合关键词与向量搜索
- 缓存机制:缓存常见查询结果
扩展应用场景
本技术方案可应用于:
- 企业内部知识库问答系统
- 产品文档智能助手
- 教育领域的学习辅导系统
- 技术支持自动化应答
总结
本文详细介绍了使用Kotlin和Spring AI构建智能文档问答系统的全过程。通过结合向量数据库与大型语言模型,我们实现了能够理解专业问题并从官方文档中提取准确信息的智能系统。这种架构既保持了生成式AI的灵活性,又确保了回答的专业性和准确性,是构建企业级AI应用的理想选择。
读者可以根据实际需求,扩展文档来源、优化检索策略或集成更多AI能力,打造更强大的智能应用系统。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1