首页
/ 在ModelScope/SWIFT中使用LoRA微调Qwen2.5-VL模型进行序列分类任务的技术实践

在ModelScope/SWIFT中使用LoRA微调Qwen2.5-VL模型进行序列分类任务的技术实践

2025-05-31 23:17:15作者:柯茵沙

背景介绍

ModelScope/SWIFT是一个强大的深度学习框架,它提供了便捷的工具来微调各种预训练模型。在实际应用中,我们经常需要对视觉语言模型进行微调以适应特定的分类任务。本文将详细介绍如何使用SWIFT框架中的LoRA技术对Qwen2.5-VL-7B-Instruct模型进行序列分类任务的微调,以及如何在推理阶段正确加载LoRA参数并获取分类得分。

LoRA技术简介

LoRA(Low-Rank Adaptation)是一种高效的参数微调方法,它通过在预训练模型的权重矩阵上添加低秩分解的适配器来减少需要训练的参数数量。这种方法特别适合大模型的微调,因为它既保持了模型性能,又大幅降低了计算资源需求。

模型微调配置

在SWIFT框架中,我们可以使用以下关键参数配置来微调Qwen2.5-VL模型:

MAX_PIXELS=1003520 \
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
swift sft \
--model Qwen2.5-VL-7B-Instruct \
--task_type 'seq_cls' \
--num_labels 11 \
--train_type lora \
--dataset data/train.json \
--val_dataset data/test.json \
--torch_dtype bfloat16 \
--num_train_epochs 1 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--learning_rate 1e-4 \
--lora_rank 32 \
--lora_alpha 32 \
--target_modules all-linear \
--freeze_vit false \
--gradient_accumulation_steps 16 \
--eval_steps 1 \
--save_steps 50 \
--save_total_limit 5 \
--logging_steps 5 \
--max_length 2048 \
--output_dir 'output_flash_attn_vit_r32' \
--warmup_ratio 0.05 \
--dataloader_num_workers 4 \
--model_author peterp \
--model_name test_cls \
--attn_impl flash_attn

这些参数中值得注意的几个关键点:

  1. --task_type 'seq_cls'指定了任务类型为序列分类
  2. --num_labels 11设置了分类任务的类别数为11
  3. --train_type lora启用了LoRA微调方式
  4. --lora_rank 32--lora_alpha 32定义了LoRA适配器的秩和缩放系数
  5. --target_modules all-linear表示对所有线性层应用LoRA适配器

推理阶段的关键技术

在完成模型微调后,推理阶段需要注意以下几点:

  1. LoRA参数加载:SWIFT框架会自动处理LoRA参数的加载,开发者无需特别关注。框架会将微调后的LoRA适配器参数与原始预训练模型权重自动结合。

  2. 分类得分获取:要获取模型的分类预测得分,只需在推理时设置--logprobs true参数。这会使得模型输出每个类别的对数概率,可以方便地转换为概率分布。

  3. 模型整合:虽然LoRA参数是独立存储的,但在推理时SWIFT会将其与基础模型无缝整合,开发者可以像使用普通模型一样使用微调后的模型。

实践建议

  1. 对于视觉语言模型的分类任务,建议保持视觉编码器可训练(--freeze_vit false),以获得更好的性能。

  2. 使用flash_attn实现可以显著提高注意力计算的效率,特别是在处理长序列时。

  3. 在多GPU环境下训练时,合理设置gradient_accumulation_steps可以在保持较大有效批量的同时减少内存消耗。

  4. 对于分类任务,适当调整learning_ratewarmup_ratio有助于模型收敛。

总结

通过SWIFT框架的LoRA微调功能,我们可以高效地对Qwen2.5-VL这样的视觉语言模型进行序列分类任务的适配。这种方法不仅节省了计算资源,还能保持模型的强大性能。在推理阶段,简单的参数设置即可获取模型的分类预测得分,为实际应用提供了便利。这种技术方案特别适合资源有限但需要定制化模型性能的场景。

登录后查看全文
热门项目推荐

项目优选

收起
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
144
229
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
718
461
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
107
166
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
311
1.04 K
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
368
358
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
117
255
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.02 K
0
open-eBackupopen-eBackup
open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
111
75
CangjieMagicCangjieMagic
基于仓颉编程语言构建的 LLM Agent 开发框架,其主要特点包括:Agent DSL、支持 MCP 协议,支持模块化调用,支持任务智能规划。
Cangjie
592
48
note-gennote-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
73
2