在ModelScope/SWIFT中使用LoRA微调Qwen2.5-VL模型进行序列分类任务的技术实践
背景介绍
ModelScope/SWIFT是一个强大的深度学习框架,它提供了便捷的工具来微调各种预训练模型。在实际应用中,我们经常需要对视觉语言模型进行微调以适应特定的分类任务。本文将详细介绍如何使用SWIFT框架中的LoRA技术对Qwen2.5-VL-7B-Instruct模型进行序列分类任务的微调,以及如何在推理阶段正确加载LoRA参数并获取分类得分。
LoRA技术简介
LoRA(Low-Rank Adaptation)是一种高效的参数微调方法,它通过在预训练模型的权重矩阵上添加低秩分解的适配器来减少需要训练的参数数量。这种方法特别适合大模型的微调,因为它既保持了模型性能,又大幅降低了计算资源需求。
模型微调配置
在SWIFT框架中,我们可以使用以下关键参数配置来微调Qwen2.5-VL模型:
MAX_PIXELS=1003520 \
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
swift sft \
--model Qwen2.5-VL-7B-Instruct \
--task_type 'seq_cls' \
--num_labels 11 \
--train_type lora \
--dataset data/train.json \
--val_dataset data/test.json \
--torch_dtype bfloat16 \
--num_train_epochs 1 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--learning_rate 1e-4 \
--lora_rank 32 \
--lora_alpha 32 \
--target_modules all-linear \
--freeze_vit false \
--gradient_accumulation_steps 16 \
--eval_steps 1 \
--save_steps 50 \
--save_total_limit 5 \
--logging_steps 5 \
--max_length 2048 \
--output_dir 'output_flash_attn_vit_r32' \
--warmup_ratio 0.05 \
--dataloader_num_workers 4 \
--model_author peterp \
--model_name test_cls \
--attn_impl flash_attn
这些参数中值得注意的几个关键点:
--task_type 'seq_cls'指定了任务类型为序列分类--num_labels 11设置了分类任务的类别数为11--train_type lora启用了LoRA微调方式--lora_rank 32和--lora_alpha 32定义了LoRA适配器的秩和缩放系数--target_modules all-linear表示对所有线性层应用LoRA适配器
推理阶段的关键技术
在完成模型微调后,推理阶段需要注意以下几点:
-
LoRA参数加载:SWIFT框架会自动处理LoRA参数的加载,开发者无需特别关注。框架会将微调后的LoRA适配器参数与原始预训练模型权重自动结合。
-
分类得分获取:要获取模型的分类预测得分,只需在推理时设置
--logprobs true参数。这会使得模型输出每个类别的对数概率,可以方便地转换为概率分布。 -
模型整合:虽然LoRA参数是独立存储的,但在推理时SWIFT会将其与基础模型无缝整合,开发者可以像使用普通模型一样使用微调后的模型。
实践建议
-
对于视觉语言模型的分类任务,建议保持视觉编码器可训练(
--freeze_vit false),以获得更好的性能。 -
使用
flash_attn实现可以显著提高注意力计算的效率,特别是在处理长序列时。 -
在多GPU环境下训练时,合理设置
gradient_accumulation_steps可以在保持较大有效批量的同时减少内存消耗。 -
对于分类任务,适当调整
learning_rate和warmup_ratio有助于模型收敛。
总结
通过SWIFT框架的LoRA微调功能,我们可以高效地对Qwen2.5-VL这样的视觉语言模型进行序列分类任务的适配。这种方法不仅节省了计算资源,还能保持模型的强大性能。在推理阶段,简单的参数设置即可获取模型的分类预测得分,为实际应用提供了便利。这种技术方案特别适合资源有限但需要定制化模型性能的场景。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00