在ModelScope/SWIFT中使用LoRA微调Qwen2.5-VL模型进行序列分类任务的技术实践
背景介绍
ModelScope/SWIFT是一个强大的深度学习框架,它提供了便捷的工具来微调各种预训练模型。在实际应用中,我们经常需要对视觉语言模型进行微调以适应特定的分类任务。本文将详细介绍如何使用SWIFT框架中的LoRA技术对Qwen2.5-VL-7B-Instruct模型进行序列分类任务的微调,以及如何在推理阶段正确加载LoRA参数并获取分类得分。
LoRA技术简介
LoRA(Low-Rank Adaptation)是一种高效的参数微调方法,它通过在预训练模型的权重矩阵上添加低秩分解的适配器来减少需要训练的参数数量。这种方法特别适合大模型的微调,因为它既保持了模型性能,又大幅降低了计算资源需求。
模型微调配置
在SWIFT框架中,我们可以使用以下关键参数配置来微调Qwen2.5-VL模型:
MAX_PIXELS=1003520 \
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
swift sft \
--model Qwen2.5-VL-7B-Instruct \
--task_type 'seq_cls' \
--num_labels 11 \
--train_type lora \
--dataset data/train.json \
--val_dataset data/test.json \
--torch_dtype bfloat16 \
--num_train_epochs 1 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--learning_rate 1e-4 \
--lora_rank 32 \
--lora_alpha 32 \
--target_modules all-linear \
--freeze_vit false \
--gradient_accumulation_steps 16 \
--eval_steps 1 \
--save_steps 50 \
--save_total_limit 5 \
--logging_steps 5 \
--max_length 2048 \
--output_dir 'output_flash_attn_vit_r32' \
--warmup_ratio 0.05 \
--dataloader_num_workers 4 \
--model_author peterp \
--model_name test_cls \
--attn_impl flash_attn
这些参数中值得注意的几个关键点:
--task_type 'seq_cls'指定了任务类型为序列分类--num_labels 11设置了分类任务的类别数为11--train_type lora启用了LoRA微调方式--lora_rank 32和--lora_alpha 32定义了LoRA适配器的秩和缩放系数--target_modules all-linear表示对所有线性层应用LoRA适配器
推理阶段的关键技术
在完成模型微调后,推理阶段需要注意以下几点:
-
LoRA参数加载:SWIFT框架会自动处理LoRA参数的加载,开发者无需特别关注。框架会将微调后的LoRA适配器参数与原始预训练模型权重自动结合。
-
分类得分获取:要获取模型的分类预测得分,只需在推理时设置
--logprobs true参数。这会使得模型输出每个类别的对数概率,可以方便地转换为概率分布。 -
模型整合:虽然LoRA参数是独立存储的,但在推理时SWIFT会将其与基础模型无缝整合,开发者可以像使用普通模型一样使用微调后的模型。
实践建议
-
对于视觉语言模型的分类任务,建议保持视觉编码器可训练(
--freeze_vit false),以获得更好的性能。 -
使用
flash_attn实现可以显著提高注意力计算的效率,特别是在处理长序列时。 -
在多GPU环境下训练时,合理设置
gradient_accumulation_steps可以在保持较大有效批量的同时减少内存消耗。 -
对于分类任务,适当调整
learning_rate和warmup_ratio有助于模型收敛。
总结
通过SWIFT框架的LoRA微调功能,我们可以高效地对Qwen2.5-VL这样的视觉语言模型进行序列分类任务的适配。这种方法不仅节省了计算资源,还能保持模型的强大性能。在推理阶段,简单的参数设置即可获取模型的分类预测得分,为实际应用提供了便利。这种技术方案特别适合资源有限但需要定制化模型性能的场景。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00