图神经网络在化学领域的应用:最佳实践指南
2025-05-06 21:37:13作者:农烁颖Land
1、项目介绍
本项目是基于图神经网络(GNN)在化学领域的应用研究。图神经网络是一种强大的深度学习模型,能够有效地对图结构数据进行学习和分析。本项目旨在利用GNNs处理化学分子结构,为化学家提供一种高效的工具,以预测分子的性质,如溶解度、毒性、反应性等。
2、项目快速启动
在开始之前,请确保您的系统已经安装了以下依赖:
- Python 3.6 或更高版本
- PyTorch
- torch-geometric
以下是将项目快速启动的步骤:
# 克隆项目仓库
git clone https://github.com/HFooladi/GNNs-For-Chemists.git
# 进入项目目录
cd GNNs-For-Chemists
# 安装依赖
pip install -r requirements.txt
# 运行示例脚本
python example_script.py
3、应用案例和最佳实践
本项目提供了多个应用案例,以下是一些最佳实践的示例:
预测分子性质
利用GNN模型预测分子的各种性质,如沸点、熔点、毒性等。以下是一个基本的训练循环示例:
import torch
from torch_geometric.data import DataLoader
from model import GNNModel
# 加载分子数据集
dataset = your_dataset_loader()
loader = DataLoader(dataset, batch_size=32)
# 初始化模型
model = GNNModel()
# 训练模型
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
for epoch in range(200):
for data in loader:
optimizer.zero_grad()
output = model(data)
loss = your_loss_function(output, data.y)
loss.backward()
optimizer.step()
模型优化
在模型训练过程中,应该监控验证集的性能,以避免过拟合。使用早停法(early stopping)可以在验证集性能不再提升时停止训练,以下是一个简单的早停实现:
# 初始化早停监控
patience = 10
best_val_loss = float('inf')
patience_counter = 0
for epoch in range(200):
# ... 训练代码 ...
val_loss = your_validation_loss_function()
if val_loss < best_val_loss:
best_val_loss = val_loss
patience_counter = 0
else:
patience_counter += 1
if patience_counter >= patience:
print("Early stopping triggered!")
break
4、典型生态项目
在开源生态中,以下是一些与本项目相关的典型项目,它们同样采用了GNNs在化学领域的应用:
spektral:基于Keras和TensorFlow的图神经网络库。deepchem:用于药物发现的深度学习库。graph-nets:Google开发的图神经网络研究和应用库。
通过以上项目,可以进一步探索GNNs在化学领域的广泛应用和最佳实践。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
【免费下载】 DLL修复工具免费版 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
286
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
722
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19