图神经网络在化学领域的应用:最佳实践指南
2025-05-06 05:03:29作者:农烁颖Land
1、项目介绍
本项目是基于图神经网络(GNN)在化学领域的应用研究。图神经网络是一种强大的深度学习模型,能够有效地对图结构数据进行学习和分析。本项目旨在利用GNNs处理化学分子结构,为化学家提供一种高效的工具,以预测分子的性质,如溶解度、毒性、反应性等。
2、项目快速启动
在开始之前,请确保您的系统已经安装了以下依赖:
- Python 3.6 或更高版本
- PyTorch
- torch-geometric
以下是将项目快速启动的步骤:
# 克隆项目仓库
git clone https://github.com/HFooladi/GNNs-For-Chemists.git
# 进入项目目录
cd GNNs-For-Chemists
# 安装依赖
pip install -r requirements.txt
# 运行示例脚本
python example_script.py
3、应用案例和最佳实践
本项目提供了多个应用案例,以下是一些最佳实践的示例:
预测分子性质
利用GNN模型预测分子的各种性质,如沸点、熔点、毒性等。以下是一个基本的训练循环示例:
import torch
from torch_geometric.data import DataLoader
from model import GNNModel
# 加载分子数据集
dataset = your_dataset_loader()
loader = DataLoader(dataset, batch_size=32)
# 初始化模型
model = GNNModel()
# 训练模型
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
for epoch in range(200):
for data in loader:
optimizer.zero_grad()
output = model(data)
loss = your_loss_function(output, data.y)
loss.backward()
optimizer.step()
模型优化
在模型训练过程中,应该监控验证集的性能,以避免过拟合。使用早停法(early stopping)可以在验证集性能不再提升时停止训练,以下是一个简单的早停实现:
# 初始化早停监控
patience = 10
best_val_loss = float('inf')
patience_counter = 0
for epoch in range(200):
# ... 训练代码 ...
val_loss = your_validation_loss_function()
if val_loss < best_val_loss:
best_val_loss = val_loss
patience_counter = 0
else:
patience_counter += 1
if patience_counter >= patience:
print("Early stopping triggered!")
break
4、典型生态项目
在开源生态中,以下是一些与本项目相关的典型项目,它们同样采用了GNNs在化学领域的应用:
spektral
:基于Keras和TensorFlow的图神经网络库。deepchem
:用于药物发现的深度学习库。graph-nets
:Google开发的图神经网络研究和应用库。
通过以上项目,可以进一步探索GNNs在化学领域的广泛应用和最佳实践。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp 前端开发实验室:优化调查表单测试断言的最佳实践2 freeCodeCamp贷款资格检查器中的参数验证问题分析3 freeCodeCamp课程内容中的常见拼写错误修正4 freeCodeCamp全栈开发课程中冗余描述行的清理优化5 freeCodeCamp论坛搜索与帖子标题不一致问题的技术分析6 freeCodeCamp英语课程中动词时态一致性问题的分析与修正7 freeCodeCamp全栈开发课程HTML语法检查与内容优化建议8 freeCodeCamp课程中关于单选框样式定制的技术解析9 freeCodeCamp全栈开发课程中收藏图标切换器的优化建议10 freeCodeCamp全栈开发课程中JavaScript对象相关讲座的重构建议
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K

deepin linux kernel
C
22
6

React Native鸿蒙化仓库
C++
192
274

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
423
392

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
511