图神经网络在化学领域的应用:最佳实践指南
2025-05-06 09:31:44作者:农烁颖Land
1、项目介绍
本项目是基于图神经网络(GNN)在化学领域的应用研究。图神经网络是一种强大的深度学习模型,能够有效地对图结构数据进行学习和分析。本项目旨在利用GNNs处理化学分子结构,为化学家提供一种高效的工具,以预测分子的性质,如溶解度、毒性、反应性等。
2、项目快速启动
在开始之前,请确保您的系统已经安装了以下依赖:
- Python 3.6 或更高版本
- PyTorch
- torch-geometric
以下是将项目快速启动的步骤:
# 克隆项目仓库
git clone https://github.com/HFooladi/GNNs-For-Chemists.git
# 进入项目目录
cd GNNs-For-Chemists
# 安装依赖
pip install -r requirements.txt
# 运行示例脚本
python example_script.py
3、应用案例和最佳实践
本项目提供了多个应用案例,以下是一些最佳实践的示例:
预测分子性质
利用GNN模型预测分子的各种性质,如沸点、熔点、毒性等。以下是一个基本的训练循环示例:
import torch
from torch_geometric.data import DataLoader
from model import GNNModel
# 加载分子数据集
dataset = your_dataset_loader()
loader = DataLoader(dataset, batch_size=32)
# 初始化模型
model = GNNModel()
# 训练模型
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
for epoch in range(200):
for data in loader:
optimizer.zero_grad()
output = model(data)
loss = your_loss_function(output, data.y)
loss.backward()
optimizer.step()
模型优化
在模型训练过程中,应该监控验证集的性能,以避免过拟合。使用早停法(early stopping)可以在验证集性能不再提升时停止训练,以下是一个简单的早停实现:
# 初始化早停监控
patience = 10
best_val_loss = float('inf')
patience_counter = 0
for epoch in range(200):
# ... 训练代码 ...
val_loss = your_validation_loss_function()
if val_loss < best_val_loss:
best_val_loss = val_loss
patience_counter = 0
else:
patience_counter += 1
if patience_counter >= patience:
print("Early stopping triggered!")
break
4、典型生态项目
在开源生态中,以下是一些与本项目相关的典型项目,它们同样采用了GNNs在化学领域的应用:
spektral
:基于Keras和TensorFlow的图神经网络库。deepchem
:用于药物发现的深度学习库。graph-nets
:Google开发的图神经网络研究和应用库。
通过以上项目,可以进一步探索GNNs在化学领域的广泛应用和最佳实践。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K