图神经网络在化学领域的应用:最佳实践指南
2025-05-06 18:23:27作者:农烁颖Land
1、项目介绍
本项目是基于图神经网络(GNN)在化学领域的应用研究。图神经网络是一种强大的深度学习模型,能够有效地对图结构数据进行学习和分析。本项目旨在利用GNNs处理化学分子结构,为化学家提供一种高效的工具,以预测分子的性质,如溶解度、毒性、反应性等。
2、项目快速启动
在开始之前,请确保您的系统已经安装了以下依赖:
- Python 3.6 或更高版本
 - PyTorch
 - torch-geometric
 
以下是将项目快速启动的步骤:
# 克隆项目仓库
git clone https://github.com/HFooladi/GNNs-For-Chemists.git
# 进入项目目录
cd GNNs-For-Chemists
# 安装依赖
pip install -r requirements.txt
# 运行示例脚本
python example_script.py
3、应用案例和最佳实践
本项目提供了多个应用案例,以下是一些最佳实践的示例:
预测分子性质
利用GNN模型预测分子的各种性质,如沸点、熔点、毒性等。以下是一个基本的训练循环示例:
import torch
from torch_geometric.data import DataLoader
from model import GNNModel
# 加载分子数据集
dataset = your_dataset_loader()
loader = DataLoader(dataset, batch_size=32)
# 初始化模型
model = GNNModel()
# 训练模型
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
for epoch in range(200):
    for data in loader:
        optimizer.zero_grad()
        output = model(data)
        loss = your_loss_function(output, data.y)
        loss.backward()
        optimizer.step()
模型优化
在模型训练过程中,应该监控验证集的性能,以避免过拟合。使用早停法(early stopping)可以在验证集性能不再提升时停止训练,以下是一个简单的早停实现:
# 初始化早停监控
patience = 10
best_val_loss = float('inf')
patience_counter = 0
for epoch in range(200):
    # ... 训练代码 ...
    val_loss = your_validation_loss_function()
    if val_loss < best_val_loss:
        best_val_loss = val_loss
        patience_counter = 0
    else:
        patience_counter += 1
        if patience_counter >= patience:
            print("Early stopping triggered!")
            break
4、典型生态项目
在开源生态中,以下是一些与本项目相关的典型项目,它们同样采用了GNNs在化学领域的应用:
spektral:基于Keras和TensorFlow的图神经网络库。deepchem:用于药物发现的深度学习库。graph-nets:Google开发的图神经网络研究和应用库。
通过以上项目,可以进一步探索GNNs在化学领域的广泛应用和最佳实践。
登录后查看全文 
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
105
133
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
161
暂无简介
Dart
568
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
250
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446