TSD-SR 项目启动和配置文档
2025-05-19 20:49:21作者:管翌锬
1. 项目的目录结构及介绍
TSD-SR 项目是基于 PyTorch 的图像超分辨率开源项目。项目的目录结构如下:
TSD-SR/
├── assets/ # 存储项目相关资源文件
├── basicsr/ # 存储基础图像处理工具
├── config/ # 存储配置文件
├── data/ # 存储数据预处理脚本和数据集
├── models/ # 存储模型相关代码
├── script/ # 存储训练和测试脚本
├── test/ # 存储测试相关代码
├── train/ # 存储训练相关代码
├── utils/ # 存储通用工具函数
├── LICENSE # 项目许可证文件
├── README.md # 项目说明文件
├── requirements.txt # 项目依赖文件
assets/
: 存储项目的静态资源,如示例图片等。basicsr/
: 包含基础图像处理工具,如图像读取、转换等。config/
: 包含项目配置文件,用于定义模型参数、训练设置等。data/
: 包含数据预处理的脚本,以及存储训练和测试数据集。models/
: 包含模型定义和实现的代码。script/
: 包含启动训练和测试的脚本。test/
: 包含测试模型的代码。train/
: 包含模型训练的代码。utils/
: 包含项目通用的辅助函数和工具。LICENSE
: 项目使用的许可证信息。README.md
: 项目的详细介绍和使用说明。requirements.txt
: 项目依赖的 Python 包列表。
2. 项目的启动文件介绍
项目的启动主要通过 script/
目录下的脚本进行。以下是一些主要的启动文件:
train.sh
: 启动模型训练的脚本。该脚本设置了环境变量,并使用accelerate launch
命令来启动多GPU训练。test.sh
: 启动模型测试的脚本。该脚本用于执行测试命令,并生成测试结果。
例如,要启动训练,可以在命令行中执行以下命令:
bash script/train.sh
3. 项目的配置文件介绍
项目的配置文件位于 config/
目录下,主要包括:
config.yaml
: 包含模型架构、训练参数、优化器设置等配置信息。这些配置可以在启动训练时通过--config_file
参数指定。
以下是一个配置文件的示例:
# 模型配置
model:
name: TSD-SR
args:
# 模型参数
...
# 训练配置
train:
batch_size: 2
epochs: 200
learning_rate: 5e-06
...
# 测试配置
test:
batch_size: 1
...
通过修改 config.yaml
文件,可以调整模型的参数和训练设置,以适应不同的训练需求。在训练脚本中,可以通过以下方式指定配置文件:
accelerate launch train/train.py --config_file config/config.yaml
以上是 TSD-SR 项目的目录结构、启动文件和配置文件的介绍。通过这些信息,可以更好地理解和操作这个开源项目。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~062CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

openGauss kernel ~ openGauss is an open source relational database management system
C++
136
186

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
881
521

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
361
381

React Native鸿蒙化仓库
C++
182
264

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
613
60

open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
118
78