ChatGLM3微调推理过程中tokenizer报错问题分析与解决方案
问题背景
在使用ChatGLM3进行P-Tuning微调后,用户在执行推理(inference)时遇到了一个关于tokenizer的报错。具体错误信息显示为"AttributeError: can't set attribute 'eos_token'",这表明在加载tokenizer时尝试设置eos_token属性时出现了问题。
错误分析
这个错误通常发生在以下情况:
-
tokenizer版本不匹配:当使用较新版本的transformers库加载旧版tokenizer时,可能会因为属性设置方式的变化而出现此类错误。
-
配置文件不一致:微调后的模型checkpoint中的tokenizer配置文件与当前代码库版本不一致。
-
属性保护机制:在某些版本的transformers中,eos_token等特殊token属性可能被设置为只读,无法直接修改。
解决方案
根据项目维护者的建议,解决此问题的方法是:
-
更新代码库:将huggingface transformers代码和ChatGLM3项目代码更新至2023年2月23日(0223)版本。这个版本虽然模型文件没有变化,但配置文件已经更新,可以解决tokenizer加载问题。
-
版本一致性检查:确保训练和推理环境使用的transformers库版本一致,避免因版本差异导致的兼容性问题。
深入理解
在自然语言处理中,tokenizer负责将文本转换为模型可以理解的token ID序列。eos_token(End Of Sequence token)是tokenizer中一个重要的特殊token,用于标记序列的结束。当tokenizer加载过程中无法设置这个关键属性时,整个推理流程就会中断。
ChatGLM3作为大型语言模型,其tokenizer实现有其特殊性。项目维护者通过更新配置文件的方式解决了这个问题,说明这可能是一个已知的兼容性问题,而非模型本身的缺陷。
最佳实践建议
-
环境管理:在使用ChatGLM3进行微调和推理时,建议使用虚拟环境,并严格记录所有依赖库的版本。
-
版本控制:跟踪项目更新日志,及时同步最新代码,特别是配置文件的变更。
-
错误排查:遇到类似tokenizer加载问题时,可以尝试清除huggingface缓存(通常位于~/.cache/huggingface),然后重新加载模型和tokenizer。
-
社区支持:ChatGLM3作为开源项目,遇到问题时可以参考社区讨论或提交issue寻求帮助。
通过遵循这些建议,用户可以更顺利地完成ChatGLM3的微调和推理流程,充分发挥这一强大语言模型的潜力。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









