JSR项目中处理npm与JSR双发布的peerDependencies最佳实践
在开发JavaScript/TypeScript库时,许多开发者希望同时支持npm和JSR两个包管理平台的发布。然而,当涉及到peerDependencies时,这种双发布模式会遇到一些特有的挑战。本文将深入分析这些问题的根源,并提供切实可行的解决方案。
问题背景
当库作者尝试将一个同时依赖npm和JSR上存在的包作为peerDependencies时,JSR的发布过程往往会失败。典型错误表现为模块解析失败,提示"Module not found"错误。这种情况特别容易发生在依赖链中同时包含npm原生包和JSR包的情况下。
核心问题分析
问题的本质在于JSR和npm对peerDependencies的处理机制存在差异:
-
npm的处理方式:npm会在安装时检查peerDependencies,但不会自动安装它们,而是依赖宿主环境提供这些依赖
-
JSR的构建机制:JSR在发布时会执行模块图构建,需要能够解析所有依赖,包括peerDependencies
-
模块解析策略:JSR默认会尝试从本地文件系统解析peerDependencies,而不会自动回退到远程注册表
解决方案
经过实践验证,最可靠的解决方案是将peerDependencies同时声明为devDependencies。这种方法确保了:
-
开发环境完整性:在开发过程中,所有必要的依赖都会被安装
-
JSR发布兼容性:JSR发布时能够正确解析所有依赖关系
-
运行时行为不变:peerDependencies的语义仍然保持,运行时依然由宿主环境提供这些依赖
实施步骤
- 在package.json中保持peerDependencies声明不变
- 将相同的依赖添加到devDependencies中
- 确保devDependencies版本范围与peerDependencies兼容
高级配置技巧
对于更复杂的场景,可以考虑以下进阶配置:
-
条件导出:利用package.json的exports字段针对不同环境提供不同的入口点
-
依赖别名:对于名称相同但来源不同的包,可以使用别名来区分npm和JSR版本
-
构建时替换:使用构建工具在发布前动态替换导入路径
最佳实践建议
-
保持版本同步:确保npm和JSR上的包版本保持一致
-
明确文档说明:在README中清楚地说明双平台支持情况
-
持续集成测试:设置CI流程同时测试npm和JSR的发布场景
-
渐进式迁移:对于已有项目,可以采用渐进式迁移策略
通过遵循这些实践,开发者可以有效地解决JSR和npm双发布时的peerDependencies问题,确保库在两个生态系统中都能正常工作。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00