Likwid项目中NUMA域ID在CPUset环境下的错误处理分析
2025-07-08 11:03:11作者:温玫谨Lighthearted
背景介绍
在Linux高性能计算环境中,Likwid是一个广泛使用的轻量级性能监控和调优工具集。它能够提供处理器拓扑结构、性能计数器访问以及各种性能分析功能。其中,likwid-topology工具用于展示系统的硬件拓扑信息,包括CPU核心、NUMA节点等关键架构细节。
问题现象
当用户在CPUset限制环境下运行likwid-topology工具时(例如使用taskset命令将进程绑定到特定CPU核心),工具输出的NUMA域信息会出现异常。具体表现为:
- HWThread列表显示所有逻辑处理器的条目,而不仅仅是当前CPUset允许的处理器
- NUMA域中的处理器ID列表包含错误条目
技术分析
这个问题的根源在于Likwid在解析NUMA域信息时,没有正确处理CPUset的限制条件。在Linux系统中,taskset命令通过cpuset机制限制进程可以使用的CPU资源,但Likwid的原始实现未能完全遵循这一限制。
在源码层面,问题主要出现在numa_proc.c文件的第384-385行附近。这部分代码负责从/proc文件系统读取NUMA节点信息并构建处理器列表,但在处理过程中没有充分考虑当前进程的CPU亲和性设置。
解决方案
开发团队通过以下方式修复了这个问题:
- 在收集NUMA域信息时,增加了对当前进程CPU亲和性设置的检查
- 确保只包含实际可用的处理器ID到NUMA域列表中
- 修正了HWThread列表的显示逻辑,使其准确反映当前CPUset的设置
修复后的版本能够正确识别并遵守CPUset限制,仅显示和统计当前进程可用的处理器资源。
实际影响
这个修复对于以下场景尤为重要:
- 在共享计算节点上运行性能分析任务时,管理员通常会限制每个任务可用的CPU资源
- 容器化环境中,容器通常被限制只能使用特定的CPU核心
- 需要精确控制进程CPU亲和性的性能调优场景
在这些情况下,准确的NUMA域信息对于性能分析和优化至关重要。错误的拓扑信息可能导致用户做出错误的性能调优决策。
最佳实践
对于Likwid用户,建议:
- 确保使用最新版本的Likwid工具集
- 在CPUset环境下运行时,验证likwid-topology的输出是否符合预期
- 对于关键性能分析任务,交叉验证工具输出与实际系统配置
这个修复体现了Likwid项目对精确性和可靠性的持续追求,确保了工具在各种复杂环境下的准确性。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K