Fastjson2 对 UnsignedLong 类型的支持问题解析
在 Java 开发中,处理无符号长整型(UnsignedLong)数据时,JSON 序列化是一个常见需求。阿里巴巴开源的 Fastjson2 库近期修复了一个关于 UnsignedLong 类型序列化的重要问题,这对于使用 ClickHouse 数据库的开发者尤为重要。
问题背景
ClickHouse 数据库的 JDBC 驱动在处理 select count(1) 这类聚合查询时,会返回 UnsignedLong 类型的结果。当开发者尝试使用 Fastjson2 将这些结果序列化为 JSON 字符串时,发现 UnsignedLong 类型的字段被序列化为空对象 {},而其他主流 JSON 库如 Jackson、Hutool-JSON 和 Gson 都能正确处理这种类型。
技术分析
UnsignedLong 是 Java 中用于表示无符号长整型的特殊类型,它通常用于处理超出 Java 原生 long 类型范围的数值。在 JSON 序列化过程中,不同类型的库采用了不同的处理策略:
- Jackson:直接将 UnsignedLong 转换为对应的数值
- Hutool-JSON:同样直接输出数值
- Gson:输出包含数值的对象结构
- Fastjson2(修复前):错误地输出空对象
这种差异源于各库对特殊类型的默认序列化策略不同。Fastjson2 在早期版本中没有为 UnsignedLong 类型提供专门的序列化器,导致其使用默认的对象序列化方式,从而产生了不符合预期的输出。
解决方案
Fastjson2 开发团队在 2.0.53 版本中修复了这一问题。新版本增加了对 UnsignedLong 类型的专门支持,现在能够正确地将 UnsignedLong 值序列化为对应的数值形式,与其他主流 JSON 库保持一致。
实际影响
这一修复对于以下场景尤为重要:
- 使用 ClickHouse 进行大数据分析的 Java 应用
- 需要处理大数量统计结果的系统
- 使用 Fastjson2 作为主要 JSON 库的项目
开发者现在可以放心地使用 Fastjson2 来处理来自 ClickHouse 的聚合查询结果,而无需担心数据序列化问题。
最佳实践
对于需要处理 UnsignedLong 类型的项目,建议:
- 升级到 Fastjson2 2.0.53 或更高版本
- 在序列化配置中明确指定数值类型的处理策略
- 对于跨系统数据交换,确保各方对无符号数的处理方式一致
这一改进体现了 Fastjson2 项目对开发者实际需求的快速响应能力,也展示了开源社区通过问题反馈和修复不断完善产品的良性循环。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00