CogVideo训练数据集的技术要点解析
视频帧率处理策略
在CogVideo模型训练过程中,视频帧率的处理是一个关键环节。根据项目实践,建议将视频帧率统一处理为8fps。对于原始帧率高于8fps的视频,应采用平均采样的方式降至8fps。这一处理方式的原因在于:
-
避免慢动作效果:如果直接使用高帧率视频而不进行降采样,会导致生成的视频出现不自然的慢动作效果。例如,48帧的30fps视频时长不足2秒,而经过降采样处理后可以保持合理的视频节奏。
-
计算效率优化:较低的帧率可以减少模型训练时的计算负担,同时仍能保持视频内容的连贯性。
对于常见的30fps视频素材,建议采用间隔采样策略。例如,6秒180帧(30fps×6秒)的视频,可以通过交替跳过3帧和4帧的方式,最终采样出48帧,这样既能均匀覆盖视频内容,又能避免末尾帧丢失的问题。
视频时长与分辨率要求
训练视频的时长建议控制在4-6秒之间,这个时长范围能够提供足够的动作信息,同时不会给模型训练带来过大负担。关于视频分辨率:
-
基础版本要求:当前CogVideo基础版本主要支持480×720分辨率。训练时视频会被自动调整至此尺寸。
-
多分辨率扩展:通过特定的技术手段(如PE插值技巧),可以实现多分辨率训练。有研究团队已经实现了任意分辨率的视频训练能力,这为模型应用提供了更大的灵活性。
数据集内容注意事项
-
场景过渡处理:训练视频应尽量避免频繁的场景切换。理想情况下,单个视频片段应保持场景一致性,限制场景转换次数(如不超过一次)。
-
提示词规范:与视频配对的文本提示应简洁明了,建议控制在100个英文单词以内,以确保模型能够准确理解视频内容。
-
帧数上限:对于超过49帧的视频,训练时只会使用前48帧,多余的帧会被自动忽略。
训练数据量建议
对于新风格的训练,建议准备至少25个以上的视频样本。足够的样本量有助于模型更好地学习特定风格的视觉特征和运动模式。同时,数据集应尽可能覆盖该风格下的各种典型场景和动作,以提高模型的泛化能力。
通过遵循这些数据准备规范,可以显著提升CogVideo模型的训练效果,生成更高质量、更符合预期的视频内容。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00