AWS Deep Learning Containers发布TensorFlow 2.18.0推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像,它集成了主流深度学习框架及其依赖项,帮助开发者快速部署深度学习应用。这些容器经过AWS优化和测试,可直接在Amazon EC2、Amazon ECS、Amazon EKS等云服务上运行。
近日,AWS Deep Learning Containers项目发布了TensorFlow 2.18.0推理镜像的新版本,包含CPU和GPU两种架构支持。这些镜像基于Ubuntu 20.04操作系统构建,专为EC2实例优化,为TensorFlow模型推理提供了开箱即用的环境。
镜像版本详情
本次发布的TensorFlow推理镜像主要包含以下两个版本:
-
CPU版本镜像:基于TensorFlow 2.18.0构建,支持Python 3.10环境,适用于没有GPU加速需求的推理场景。该镜像包含了TensorFlow Serving API 2.18.0以及常用的Python库如PyYAML、boto3、Cython等。
-
GPU版本镜像:同样基于TensorFlow 2.18.0和Python 3.10,但额外支持CUDA 12.2和cuDNN 8,适用于需要GPU加速的推理任务。镜像中包含了TensorFlow Serving API GPU版本2.18.0,以及NCCL库等GPU相关组件。
关键组件与依赖
两个版本的镜像都经过精心配置,包含了深度学习推理任务所需的各类依赖:
-
Python包:
- TensorFlow Serving API(CPU/GPU版本)
- AWS SDK(boto3、botocore、awscli)
- 数据处理工具(PyYAML、Cython、protobuf)
- 系统工具(setuptools、packaging)
-
系统包:
- 基础开发工具(libgcc、libstdc++)
- 文本编辑器(emacs系列)
- GPU版本特有组件(CUDA 12.2工具链、cuDNN 8、NCCL)
适用场景与优势
这些预构建的TensorFlow推理镜像特别适合以下场景:
- 快速部署:无需手动配置复杂的TensorFlow环境,直接使用即可运行推理服务。
- 生产环境:经过AWS官方测试和优化,稳定性有保障。
- 云原生集成:完美适配Amazon EC2等AWS服务,可轻松扩展。
- 版本一致性:确保开发、测试和生产环境使用相同的TensorFlow版本和依赖项。
对于需要高性能推理的用户,GPU版本镜像提供了CUDA 12.2支持,能够充分利用NVIDIA GPU的加速能力。而CPU版本则更适合成本敏感型应用或不需要GPU加速的场景。
使用建议
开发者可以根据实际需求选择合适的镜像版本。对于大多数生产环境,建议使用带有特定版本号的完整标签(如2.18.0-cpu-py310-ubuntu20.04-ec2-v1.18),以确保版本一致性。而在开发阶段,可以使用更通用的标签(如2.18-cpu-ec2)以便于更新。
这些镜像已经过AWS的严格测试和性能优化,开发者可以放心地在生产环境中使用它们来部署TensorFlow模型推理服务。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00