UniverseNet: 深度学习目标检测框架实战指南
2024-09-26 17:19:25作者:牧宁李
项目概述
UniverseNet 是由 Shinya7y 创建的,基于 PyTorch 的高性能目标检测库,专门针对处理小物体、多尺度对象及复杂背景下的挑战。该框架在 BMVC 2022 上提出,并设定了 Universal-Scale Object Detection Benchmark (USB),致力于提供更加公正的比较标准和先进的检测算法。
1. 目录结构及介绍
UniverseNet 的目录结构精心设计,便于模块化扩展与维护。以下是关键目录的简述:
config: 包含所有模型的配置文件,这些文件定义了模型的结构、训练参数等。core: 核心功能实现部分,包括数据加载、模型训练与评估的核心逻辑。data: 数据处理相关脚本,包括数据集的预处理和加载逻辑。models: 实现各种骨干网络、 neck 设计、以及头部预测器等模型模块。tools: 工具脚本集合,包含训练、测试、转换模型等实用脚本。scripts: 辅助脚本,可能用于特定的任务或者环境设置。tests: 测试用例,确保框架各部分按预期工作。docs: 文档和说明文件。.gitignore,LICENSE,README.md: 项目管理文件,许可证信息和项目描述。
2. 启动文件介绍
- 主训练入口通常位于
tools/dist_train.sh,这是一个分布式训练的启动脚本,支持通过命令行指定配置文件、模型权重和GPU数量等参数来启动训练。 - 测试脚本则对应
tools/dist_test.sh,用于模型的验证与评估,同样需要配置文件和模型检查点路径作为输入。
示例启动命令:
# 训练命令
bash tools/dist_train.sh configs/universenet/universenet50_2008_fp16_4x4_mstrain_480_960_2x_coco.py 4
# 评估命令
mkdir -p $HOME/data/checkpoints/
wget -P $HOME/data/checkpoints/ [模型权重下载链接]
CONFIG_FILE=... CHECKPOINT_FILE=... GPU_NUM=4 bash tools/dist_test.sh $CONFIG_FILE $CHECKPOINT_FILE $GPU_NUM --eval bbox
3. 配置文件介绍
配置文件(一般位于 config 目录下)是控制整个训练和测试流程的关键,它们是 Python 文件,定义了模型结构、训练和测试的超参数、数据集设置等。每个配置文件大致包含以下几个主要部分:
- 基础模型设置 (
model):定义了使用的模型类型及其参数。 - 数据集设置 (
dataset_type,data_root,pipeline,ann_file等):指定了数据集的位置、格式和预处理步骤。 - 训练设置 (
train_cfg):包括批次大小、迭代周期等。 - 测试设置 (
test_cfg):定义测试时的行为,如NMS参数。 - 优化器设置 (
optimizer) 和 学习率调度 (lr_config):决定了学习过程的速度和动态。 - 运行环境配置:如是否启用同步批归一化(SyncBN),工作目录(
work_dir)等。
示例配置片段:
model = dict(
type='UniverseNet',
backbone=dict(...
),
neck=dict(...),
bbox_head=dict(...)
)
train_cfg = dict(...)
test_cfg = dict(...)
data = dict(
samples_per_gpu=4,
workers_per_gpu=2,
train=dict(...),
val=dict(...),
test=dict(...)
)
每一个配置文件都是高度定制的,允许开发者微调以适配不同的任务和资源限制,是深入了解和利用UniverseNet的门户。确保在修改配置前仔细阅读框架的官方文档和示例配置,以便正确理解每个参数的意义和影响。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248