VRP-DACT 项目启动与配置教程
2025-04-26 19:31:44作者:江焘钦
1. 项目目录结构及介绍
VRP-DACT项目的目录结构如下所示:
VRP-DACT/
├── data/ # 存储数据文件
│ ├── instances/ # 实例数据文件夹
│ └── results/ # 结果文件文件夹
├── docs/ # 项目文档
├── experiments/ # 实验脚本和结果分析文件
├── lib/ # 存储项目依赖的库文件
├── logs/ # 日志文件
├── scripts/ # 运行项目的主要脚本
├── src/ # 源代码文件夹
│ ├── algorithms/ # 算法实现
│ ├── data/ # 数据处理
│ ├── models/ # 模型定义
│ ├── utils/ # 工具函数
│ └── main.py # 主程序入口
├── tests/ # 测试代码
└── requirements.txt # 项目依赖的Python包列表
以下是各个目录的简要介绍:
data/
: 存储项目中使用的数据文件,包括实例数据和结果数据。docs/
: 项目文档,可以包含项目的说明、使用指南等。experiments/
: 实验相关脚本和结果分析文件。lib/
: 存储项目依赖的库文件,可能包含自定义的库或第三方库。logs/
: 日志文件,用于记录项目的运行情况。scripts/
: 运行项目的主要脚本,如启动脚本、数据处理脚本等。src/
: 源代码文件夹,包含项目的主要代码。algorithms/
: 算法实现代码。data/
: 数据处理相关的代码。models/
: 模型定义代码。utils/
: 工具函数代码。main.py
: 主程序入口文件。
tests/
: 测试代码,用于确保项目代码的质量和稳定性。requirements.txt
: 列出项目依赖的Python包,用于环境配置。
2. 项目的启动文件介绍
项目的启动文件是位于src/
目录下的main.py
。该文件是项目的入口点,通常包含以下内容:
- 导入所需的模块和库。
- 定义或加载配置参数。
- 初始化数据处理和模型。
- 执行主要算法。
- 保存或输出结果。
以下是main.py
的一个基本示例结构:
# 导入模块和库
import sys
import os
from src.data import DataLoader
from src.models import Model
from src.algorithms import Algorithm
# 主函数
def main():
# 加载配置
config = load_config()
# 数据加载
data_loader = DataLoader(config)
data = data_loader.load_data()
# 模型初始化
model = Model(config)
# 算法执行
algorithm = Algorithm(model, data)
results = algorithm.run()
# 结果保存或输出
save_results(results, config)
if __name__ == "__main__":
main()
3. 项目的配置文件介绍
项目的配置文件通常用于存储项目运行时所需的参数,如数据文件路径、模型参数、算法参数等。配置文件可以是.json
、.yaml
或.ini
等格式。在VRP-DACT项目中,我们假设配置文件是.json
格式,位于config/
目录下。
配置文件的一个例子可能如下所示:
{
"data_path": "data/instances/",
"result_path": "data/results/",
"model_params": {
"param1": "value1",
"param2": "value2"
},
"algorithm_params": {
"param3": "value3",
"param4": "value4"
}
}
在main.py
或其他脚本中,可以使用Python的json
模块来加载和读取这些配置:
import json
def load_config():
with open('config/config.json', 'r') as f:
config = json.load(f)
return config
通过配置文件,可以方便地调整项目参数而无需修改代码,提高项目的可配置性和可维护性。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0361Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++087Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
190
2.14 K

React Native鸿蒙化仓库
C++
205
284

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

Ascend Extension for PyTorch
Python
58
89

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
967
572

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
547
76

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
192

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
392
23