Equinox项目中高效计算Jacobian向量积的方法
2025-07-02 21:20:43作者:郦嵘贵Just
概述
在机器学习模型的训练和优化过程中,Jacobian向量积(JVP)是一个非常重要的计算操作。它能够高效地计算函数在某点的导数与特定方向向量的乘积。本文将介绍如何在Equinox框架中高效地实现这一操作,特别是如何利用JAX的linearize函数与Equinox的模块系统相结合。
问题背景
在深度学习领域,我们经常需要计算损失函数相对于模型参数的梯度,以及这些梯度的各种变换。传统的方法是使用自动微分(autodiff)直接计算完整的Jacobian矩阵,但对于大型模型来说,这种方法计算成本过高。Jacobian向量积提供了一种更高效的替代方案,它只需要计算梯度在特定方向上的投影。
Equinox中的JVP实现
Equinox作为建立在JAX之上的神经网络库,提供了filter_jvp函数来处理包含非数组参数的模块。基本用法如下:
def return_jvp(self, params, data):
primal = (params, ex, eadj)
tangents = (delta_params, xdot, adjdot)
aux = (static, ey, eb, en)
primal_val, tang_val = eqx.filter_jvp(fun, primal, tangents, data=aux)
return (primal_val+1e-2*tang_val), (primal_val.item(), tang_val.item())
这种方法虽然可行,但每次计算都需要重新构建计算图,效率不高。
更高效的解决方案:JAX linearize
JAX提供了linearize函数,它可以部分求值一个函数并返回一个高效的线性化版本,这个版本可以重复用于不同方向的向量积计算。在Equinox中,我们可以这样使用:
def linearize_example():
full_net = NN(jnp.ones((10, 10)), jnp.ones(10), jax.nn.relu)
net, static = eqx.partition(full_net, eqx.is_array)
def f(inputs):
a, b = inputs
return eqx.combine(a, static)(b)
y, f_jvp = jax.linearize(f, (net, jnp.ones(10)))
# 可以重复使用f_jvp计算不同方向的向量积
out_tangent = f_jvp((net, 0.1 * jnp.ones(10)))
关键实现细节
- 参数分割与组合:使用
eqx.partition和eqx.combine处理包含静态参数的模块 - 线性化函数封装:将模型调用封装在函数中,确保只对需要微分的参数进行操作
- 方向向量应用:通过线性化后的函数高效计算不同方向的向量积
性能比较
与直接使用filter_jvp相比,linearize方法有以下优势:
- 只需一次前向传播即可构建计算图
- 后续的向量积计算只需局部计算,无需重新构建整个计算图
- 特别适合需要多次计算不同方向向量积的场景
实际应用建议
在实际应用中,建议:
- 明确区分需要微分的参数和静态参数
- 合理封装计算函数,确保线性化操作只作用于可变参数
- 对于复杂模型,考虑分层线性化以减少内存占用
总结
Equinox与JAX的linearize函数结合使用,可以高效地实现Jacobian向量积的计算。这种方法特别适用于需要多次计算不同方向导数的大型模型优化问题。通过合理使用参数分割和函数封装,开发者可以在保持Equinox模块化优势的同时,获得与原生JAX相当的计算性能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895