FixedEffectModels.jl 的安装和配置教程
项目基础介绍
FixedEffectModels.jl 是一个用于估计线性模型的开源项目,特别是那些包含高维分类变量的模型,可能还包括工具变量。该项目是使用 Julia 编程语言编写的,Julia 是一种高性能的动态编程语言,适用于科学计算。
项目使用的关键技术和框架
FixedEffectModels.jl 使用了 FixedEffects.jl 包来进行高维固定效应的估计,它还支持多线程和 GPU 加速,以提高复杂问题的计算性能。此外,它使用了 Frisch Waugh-Lovell 定理来进行两步估计过程,以获得模型参数的估计值及其标准误差。
准备工作
在开始安装前,请确保您的计算机上已安装了 Julia。Julia 可以从其官方网站获取并安装。安装完成后,您需要打开 Julia 的命令行界面。
安装步骤
-
打开 Julia 的命令行界面。
-
首先,您需要添加 FixedEffectModels.jl 包。在 Julia 的 REPL(读取-评估-打印-循环)环境中输入以下命令:
] add FixedEffectModels这将自动从 Julia 的包注册库中下载并安装 FixedEffectModels.jl 及其依赖项。
-
如果您打算使用 GPU 加速功能,您还需要安装 CUDA.jl 包。在 REPL 环境中输入以下命令:
] add CUDA请注意,这需要您计算机上已安装了支持 CUDA 的 Nvidia GPU 驱动程序。
-
安装完成后,您可以加载 FixedEffectModels 模块,并开始使用它进行线性模型的估计。在 Julia 的命令行中输入以下命令:
using FixedEffectModels -
若要使用 FixedEffectModels 的多线程功能,您可以通过设置
nthreads选项来指定在估计过程中使用的线程数。例如:reg(df, @formula(Sales ~ NDI + fe(State) + fe(Year)), nthreads=4)这里
nthreads=4告诉 FixedEffectModels 使用 4 个线程。
现在,FixedEffectModels.jl 已安装配置完成,您可以开始估计包含高维分类变量的线性模型了。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00