WiGLE WiFi Wardriving 项目教程
1. 项目介绍
WiGLE WiFi Wardriving 是一个开源的网络观察、定位和显示客户端,它基于全球最大的可查询无线网络数据库。该项目自2001年以来一直在收集和映射网络数据,目前拥有超过3.5亿个网络数据。WiGLE WiFi Wardriving 应用可以帮助用户进行站点调查、安全分析,并与朋友进行网络发现竞赛。用户可以收集网络数据用于个人研究,或上传到 WiGLE 网站。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的开发环境已经安装了以下工具:
- Git
- Android Studio
2.2 克隆项目
首先,克隆 WiGLE WiFi Wardriving 项目到本地:
git clone https://github.com/wiglenet/wigle-wifi-wardriving.git
2.3 打开项目
使用 Android Studio 打开克隆的项目:
cd wigle-wifi-wardriving
android-studio .
2.4 构建和运行
在 Android Studio 中,点击 Build 菜单,选择 Make Project 来构建项目。构建完成后,连接您的 Android 设备或使用模拟器,点击 Run 按钮来运行应用。
3. 应用案例和最佳实践
3.1 站点调查
WiGLE WiFi Wardriving 可以用于进行无线网络的站点调查。通过收集和分析网络数据,用户可以评估网络覆盖范围、信号强度和潜在的安全问题。
3.2 安全分析
安全专家可以使用 WiGLE WiFi Wardriving 来识别和分析无线网络中的安全漏洞。通过上传数据到 WiGLE 网站,用户可以与其他安全专家共享和讨论发现的问题。
3.3 网络发现竞赛
WiGLE WiFi Wardriving 还支持用户之间的网络发现竞赛。用户可以上传他们的发现数据,并在全球 WiGLE 排行榜上与其他用户竞争。
4. 典型生态项目
4.1 WiGLE 网站
WiGLE 网站(https://wigle.net/)是 WiGLE WiFi Wardriving 项目的核心组成部分。用户可以在网站上查询和下载无线网络数据,参与社区讨论,并上传自己的发现数据。
4.2 WiGLE API
WiGLE API 允许开发者将 WiGLE 数据集成到自己的工具和项目中。通过 API,用户可以获取统计数据、进行研究,并进行可视化展示。
4.3 WiGLE 客户端工具
除了 WiGLE WiFi Wardriving 应用,WiGLE 还提供了其他客户端工具,如 KML 导出工具和网络分析工具,帮助用户更好地管理和分析无线网络数据。
通过以上模块的介绍,您应该已经对 WiGLE WiFi Wardriving 项目有了全面的了解,并能够快速启动和使用该项目。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0111
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00